初一下数学小论文(7篇)
无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
初一下数学小论文篇一
那么,数学到底体现在哪里呢?事实上,我们的生活中,数学无处不在。精密的数学竟然能跟拿袜子扯上边。关于拿多少只袜子能配成对的问题,答案并非两只。我敢担保在冬季黑蒙蒙的早上,如果我从装着黑色和蓝色袜子的抽屉里拿出两只,它们肯定无法配成一对。但是如果我从抽屉里拿出3只袜子,我敢说肯定会有一双颜色是一样的。不管成对的那双袜子是黑色还是蓝色,最终都会有一双颜色一样。当然只有当袜子是两种颜色时,这种情况才成立。如果抽屉里有3种颜色的袜子,例如蓝色、黑色和白色,你要想拿出一双颜色一样的,则至少要取出4只袜子。如果抽屉里有10种不同颜色的袜子,你就必须拿出11只。根据上述情况总结出来的数学规则是:如果你有n种类型的袜子,你必须取出n+1只,才能确保有一双完全一样。
说完拿袜子,让我们讨论一下燃烧绳子的方法。一根绳子,从一端开始燃烧,烧完需要1小时。现在你需要在不看表的情况下,仅借助这根绳子和一盒火柴测量出半小时的时间。你可能认为这很容易,你只要在绳子中间做个标记,然后测量出这根绳子燃烧完一半所用的时间就行了。然而不幸的是,这根绳子并不均匀,有些地方比较粗,有些地方却很细,因此这根绳子不同地方的燃烧率不同。也许其中一半绳子燃烧完仅需5分钟,而另一半燃烧完却需要55分钟。面对这种情况,似乎想利用上面的绳子准确测出30分钟时间根本不可能,但是事实并非如此,大家可以利用一种创新方法解决上述问题,这种方法是同时从绳子两头点火。绳子燃烧完所用的时间一定是30分钟。
同样类似的问题还有火车相向而行问题。两列火车沿相同轨道相向而行,每列火车的时速都是50英里。两车相距100英里时,一只苍蝇以每小时60英里的速度从火车a开始向火车b方向飞行。它与火车b相遇后,马上掉头向火车a飞行,如此反复,直到两列火车相撞在一起,把这只苍蝇压得粉碎。苍蝇在被压碎前一共飞行了多远?我们知道两车相距100英里,每列车的时速都是50英里。这说明每列车行驶50英里,即一小时后两车相撞。在火车出发到相撞的这一小时,苍蝇一直以每小时60英里的速度飞行,因此在两车相撞时,苍蝇飞行了60英里。不管苍蝇是沿直线飞行,还是沿“z”形线路飞行,或者在空中翻滚着飞行,其结果都一样。
日常生活中,你一定投掷过硬币。可是,你知道吗,掷硬币并非最公平的。人们认为这种方法对当事人双方都很公平。因为他们认为钱币落下后正面朝上和反面朝上的概率都一样,都是50%。但是有趣的是,这种非常受欢迎的想法并不正确。首先,虽然硬币落地时立在地上的可能性非常小,但是这种可能性是存在的。其次,即使我们排除了这种很小的可能性,测试结果也显示,如果你按常规方法抛硬币,即用大拇指轻弹,开始抛时硬币朝上的一面在落地时仍朝上的可能性大约是51%。之所以会发生上述情况,是因为在用大拇指轻弹时,有些时候钱币不会发生翻转,它只会像一个颤抖的飞碟那样上升,然后下降。如果下次你要选择,你应该先看一看哪面朝上,这样你猜对的概率要高一些。但是如果那个人是握起钱币,又把拳头调了一个个儿,那么,你就应该选择与开始时相反的一面。
总之,数学在生活中无处不在。
生活中处处有数学,生活中处处藏着数学的奥妙,我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活
运用,很少想到在实际生活中学习、掌握数学知识。从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
生活中处处有数学,比如说抽屉原理,“任意367个人中,必有生日相同的人。”“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点a、b、c、d、e、f分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑a点与其余各点间的5条连线ab,ac,...,af,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设ab,ac,ad同为红色。如果bc,bd,cd3条连线中有一条(不妨设为bc)也为红色,那么三角形abc即一个红色三角形,a、b、c代表的3个人以前彼此相
识:如果bc、bd、cd3条连线全为蓝色,那么三角形bcd即一个蓝色三角形,b、c、d代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容——拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
生活中处处有数学,比如说一元一次方程,通常形式是kx+b=0(k,b为常数,且k≠0)。一元一次方程属于整式方程,即方程两边都是整式。一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0。
我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式。这里a是未知数的系数,b是常数,x的次数是1。
ax=b
1,当a≠0,b=0时,方程有唯一解,x=0;
2,当a≠0,b≠0时,方程有唯一解,x=b/a。
3,当a=0,b=0时,方程有无数解
4,当a=0,b≠0时,方程无解
例:(3x+1)/2-2=(3x-2)/10-(2x+3)/5
5(3x+1)-10×2=(3x-2)-2(2x+3)
15x+5-20=3x-2-4x-6
15x-3x+4x=-2-6-5+20
合并同类项!
16x=7
x=7/16
示例:小明把压岁钱按定期一年存入银行。当时一年期定期存款的年利率为1.98%,利息税的税率为20%。到期支取时,扣除利息税后小明实得本利和为507.92元。问小明存入银行的压岁钱有多少元?解:设小明存入银行的压岁钱有x元,则到期支取时,利息为1.98%x元,应缴利息税为
1.98%x×20%=0.00396x元,
x+0.0198x-0.00396x=507.92
1.01584x=507.92
∴x=500
答:小明存入银行的压岁钱有500元。
生活中处处有数学,还有统计图:第五次人口普查。
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。记住,站在峰脚的人是望不到峰顶的。
初一下数学小论文篇二
初一数学与小学数学间的衔接是指学习内容上的衔接、教师教法上的衔接和学生学习习惯、学习方法的衔接,三者相互依赖,缺一不可,初一数学是中学数学的基础,为培养学生的创建精神和实践能力,使学生终身发展,须从初一抓起。
首先在教材内容上,初中《数学》第一册,涉及数、式、方程和不等式等。这些内容均与小学数学中的数、简易方程、应用题等知识相关。其次,初一数学与小学数学相比,内容更丰富、抽象、复杂。以上决定了教师教法及其学生的学法与小学相比也不尽一致。因此教学中注重知识的衔接,也是培养学生三个能力,提高质量不可忽视的方面。
1算术数与有理数
小学数学是在算术数(非负有理数)中研究问题。而初一数学是在有理数中研究问题。数域的扩充,无疑增强了难度。因而该衔接是起点、是关键。
(1)引导学生正确理解具有相反意义的量,是引进负数的向导。
通过复习算术数说明其来自现实世界,从而引出在现实生活中存在着具有相反意义的量,进而说明用算术不能表示它。顺水推舟,负数出仓。
(2)逐步加深对有理数的认识
引入负数后,扩大了数系,首先应说明有理数与算术数的不同特征。一个有理数由符号和数字二部分构成,同时应强调有理数是在算术数的基础上建立的。其次讲清其分类,与算术数比较,有理数的成员增加了一位——负数。
(3)有理数运算符号为首
有理数的运算是由两部分构成,一是符号,另一是数字。各类运算首先应根据法则确定结果的符号,再求结果,强调一个结果中,符号与数字并驾齐驱,同时正确为对,否则为错。
2数与代数式
由特殊的,具体的,确定的数到一般的、抽象的、不定的字母,是一个知识的飞跃。因学生刚接触,难理解,要善于引导,切莫操之过急。
(1)用字母表示数的优越性
小学学过的一些公式、法则、运算律等书写沉长,用字母表示简明扼要,可举例用文字表达式与字母表示同一关系,让学生领略其优越性。
(2)加深对字母a的认识
a是正数,—a是负数,是学生的一个误区。为此首先应说明符号“一_”的作用,一是表示运算符号,如1—2;二是表示性质的符号,如2;三是表示某数前有“一”号,则为其相反数,其次说明,a表示有理数,而有理数由符号和数字构成。因此a本身包含着数字与符号,即a可正、可负、可零。同理说明—a。
(3)基本数学语言的培养
a是正数表示为__;n为整数时,偶数与奇数分别表示为2n与2n+1;a、b同号表示为ab;a、b异号表示为a/b等等,数学语言都应从初一开始,循序渐进,特别在作业中强调尽量使用数学语言。
(4)列代数式的训练
此项训练可为应用题清除障碍、铺平道路,可用小学具体的数再过度到式。
3算术解法与代数解法
小学中,解决应用问题学生习惯一般用算术法,即就是上初一有的学生习惯于把问题用算术法来解,难以转弯。
首先可由简单的应用题入手,把二法对比,使学生逐步掌握代数法解题的一般步骤。其次用具体例子说明代数解法的优势,使学生体会到算术解法套类型的复杂,代数解法的简明。因此,做好这方面的衔接,是学生思维方法上的另一转折,无疑对提高学生数学能力和激发学生学习兴趣起到了推波助澜的效应。
中学与小学学习内容上的差异,导致了二阶段教学法上的不同。作为初一教师有必要研究一些小学数学教学方法,吸取其优点针对初一新生的特点优化教学方法。
1旧与新
用已有的知识技能为基础,学习和掌握新的知识技能,可按如下操作:
①结合新课分散复习小学有关数学知识
②复习形体计算公式结合代数式进行教学
③复习算术解法结合代数解法进行应用题教学
2讲与练
根据初一新生注意力不持久的特点,多采用讲练结合的方法充分让学生动口、动手、动脑,不断唤起其注意力,活跃课堂气氛,激发其兴趣与热情。
小学到初中是学生学习生涯的转折。新的教学内容,新的教学环境,使他们抱有新的希望,我们应善于抓住这一有利时机,因势利导,指导学生的学习方法,良好的学习品质由此开始培养。
1继续保持良好的学习方法和习惯
在小学学生形成的许多良好习惯,如坐式端正,回答踊跃,声音响亮,书写端正,这是小学教师栽培的结果,倡导学生继续保持。
小学教师教态亲切,讲课具有感染力,学生都在准备回答教师提出的问题,对初一学生,我们应当爱护学生举手发言的主动性,让每个学生有发言的机会,否则会挫伤其思考问题的积极性。
2指导科学的学习方法,培养良好的学习习惯
小学阶段科目少,学习内容浅,尽管学法不妥,只要用功,亦能取得好成绩。但到中学,科目倍增,学习内容加深,学习方法就成为突出矛盾。
初一学生年龄小,基于小学的学习习惯,误认为学数学就是做作业,课本是“习题集”,这就要求我们逐步培养学生的自学能力,指导学生阅读知识的载体——课本,指导学生预习、巩固、小节,要求学生对作业做到独立完成,认真检查,有错就改。
总之,如何搞好初一和小学数学的衔接问题,是提高初中数学质量,培养学习创造精神和实践能力,为学生终身发展奠定基础的重要环节,需我们在教学中不断努力实践和探索。
初一下数学小论文篇三
七年级学生大多数是13岁左右的少年,正处于长身体、长知识的起始阶段,他们好奇、热情、活泼、各方面都生气勃勃,但是他们的自制力却很差,注意力也不集中。下面是这一学期来我教七年级数学的几个案例分析:
爱因斯坦有句名言,“兴趣是最好的老师”。一个人有了“兴趣”这位良师,在学习上会变被动为主动。在教学中,特别注意以知识本身吸引学生,巧妙引入,精心设疑,造成学生渴求新知识的心理状态,激发学生学习的积极性和主动性。利用课本每一章开始的插图,提炼出生活中遇到的数学问题,引导学生共同分析问题解决问题。
比如,思考题:小梅去文具店买铅笔和橡皮,铅笔每支0.5元,橡皮每块0.4元,小梅拿了2元钱,问能买几支铅笔几块橡皮?
对于初一学生,这个问题是常识,但这个问题是开放性的,这是一个求不等式正整数解的问题,教师要引导学生,帮助小梅选择合理的购买方案。
备课时要根据学生的智力发展水平和学生的心理特点来确定教学的起点、深度和广度,让个层次的学生都有收获。如在教学“等腰三角形性质”时,出了下面一道题:
已知一个等腰三角形的一边长为5厘米,另一边长为6厘米,则这个等腰三角形的周长是多少?许多学生考虑不全面,只得出周长是16厘米。于是,老师试着反问:“难道6厘米不能作为腰吗?”学生立刻说出第二种情况周长是17厘米。
老师并没有到此结束,又接着问:“5厘米的那条边改成2厘米呢?”很多学生异口同声地说:“10厘米和14厘米”。然后要求学生在纸上画出草图,并标上长度。
很快,有学生回答:“10厘米不对!只能是14厘米”。
老师抓住时机追问原因,学生齐声回答:“三角形的任意两边之和大于第三边!”
数学概念、思想和方法是数学教育的灵魂,教师在传授知识的同时要注重数学思想方法的讲解,把常用的推理论证及处理问题的思想方法,适时适度的教给学生,这有益于提高学生的主动性和分析问题、解决问题的能力。比如,有理数这一章特别突出了数型结合的思想,紧扣数轴逐步介绍数的对应关系,启发学生从数与形两方面去发现问题,去类比,去归纳,去探究解决问题的新思路。
例如:在教学“圆的认识”一课中,我曾向学生提出一个生活问题:“你能说出为什么下水道的盖子是圆形的,而不是方形的?”有的学生很快说出:因为圆形的盖子美观。我适时引导他们:“能否用我们学过的知识去解释这个问题呢?”学生及时地联系所学过的知识去思考、交流。最后得出:因为圆的直径相等,圆形的盖子翻起时,不怕盖子掉进井里去这一结论。
在教学中,教师可以采用个别辅导、同桌交流、小组合作、全班交流等多种课堂教学组织形式,这些形式就为学生提供了合作交流的空间,同时教师还必须给学生的自主学习提供充足的时间,让他们有一个宽松、和谐的学习环境。教师应该主动由“站在讲台上”变为“走到学生中去”,使自己成为学生中的一员,与学生共同探讨学习中的问题,以沟通、商讨的口气与学生交流心得体会,为学生解疑释惑。这样学生会亲其师信其道,遇到什么问题都愿意与老师互相交谈。
新课程倡导教师“用教材”,而不是简单的“教教材”。教师要创造性的使用教材,要在使用教材的过程中融入自己的科学精神和智慧,要对教材知识进行重组和整合,通过选择和深加工设计出丰富多彩的课来。充分有效地将教材的知识讲活讲透,形成具有鲜明个性和风格的教学方法。
在上周星期五,我上了一节“一元一次不等式组的应用”。
出示例题:小宝和爸爸、妈妈三个人在广场上玩跷跷板,爸爸体重72千克,坐在跷跷板的一端。体重只有妈妈一半的小宝和妈妈一块坐在爸爸的对面,这时,爸爸压的一端仍然挨着地面。小宝眼睛一眨,借来了一副重量为6千克的哑铃,加在了他和妈妈坐的这一端,结果爸爸被高高翘起。猜猜看,小宝的体重约多少千克?
所有的学生不知所措,课堂上窃窃私语,但就是没有人举手发言,我紧接着写出了下面两个不等式:
爸爸体重=小宝体重+妈妈体重
爸爸体重=小宝体重+妈妈体重+哑铃重量
学生恍然大悟,很快列出了不等式组算出了答案。
生活是数学的宝库,生活中随处可以找到数学的原型。数学教学要尽可能贴近学生熟悉的实际生活,让学生体验数学,用好数学,学会用数学的思想和方法去观察研究解决实际问题。
如,学了圆柱的侧面积公式之后,让学生回家测量烟筒的长度及半径,第二天问部分学生,一截烟筒用了多少平米的铁皮。
学习了利息计算后,让学生计算:把500元钱存入银行,怎样存款更合算?学生先要到银行调查利率,再选择存款时间,存款方法,计算利息,找到最合算的存款方法。
初一下数学小论文篇四
初一学生充满求知的欲望,数学入门教学应注重培养创造心理,渗透数学思想方法,注意中小学知识衔接,使学生轻松入门,为今后的学习打好基础。
小学升初中,是学生成长阶段的一个重要的转型时期,对学业乃至于人生都起着较为重要的作用。“我的孩子在小学时各科成绩都很好,为什么到了中学,成绩立马就下降了呢?”不时有家长提出这样的疑问。这一现象在数学科上表现尤其突出。原因就是中小学数学科的知识以及学习方法都存在不小的差异。如果学生不能很好的入门过渡,很容易导致成绩下降,学习积极性遭受较大打击,部分学生因此厌学甚至辍学,给初中数学的教学带来不少的障碍。
新课程标准提出了“学段”的理论,把中小学分为二个学段:一、二、二年级为第一学段;四、五、六年级为第二学段;七年级、八年级、九年级为第二学段。我们不得不承认中小学的数学教学是相辅相成,持续连贯的。但是,目前仍然普遍存在中小学各白为阵、互不相干的尴尬局而。我认为,应该加强中小学教师之间,特别是小学高段与七年级教师之间的合作,在升学时把学生这根“接力棒”传接好。中小学数学教师更该如此,更新观念、提高认识,加强跨校协作,携手为学生铺路搭桥。
首先,中小学教师应该相互了解数学知识内容和知识体系,进而把握好中小学数学的内在联系。新课程标准把数学学习内容概括为“数与代数、空间与图形、统计与概率、实践与综合应用”四部分;把学习目标划分为“数感、符号感、空间观念、应用意识、推理能力”等几个方而。中小学数学的学习对象只不过层次、梯度不同而己。决定了小学数学教学应有目的的对初中数学有所铺垫和渗透;初中数学教学更应该关心小学固有的起点和模式。把中小学数学看成一个系统工程,中小学教师各尽所能,互相支持。
其次,中小学数学教师加强教学方而的研究和交流,熟悉彼此的教学方法、课堂组织形式;相互反馈教育信息,交流教学心得,便于中学教师选择适合学生的教学方法和课堂组织形式。
因此,加强中小学数学教师的合作,对初中学生数学学习入门,在教和学两方而都将起很大的作用。
新生刚入学,而对初中的全新环境,白然会有许多压力。特别会对数学的学习产生种种误解,甚至是恐惧。这要求数学教师作好初中数学的“学前教育”,打好“攻心战”,消除学生心理上的顾虑,激发学习兴趣,增强学习信心。
首先上好第一节课。新教师应该在第一节课给学生留下学识广博、志趣高雅、风趣幽默、宽严有度、容易亲近的印象,使学生能“亲其师而信其道”,逐步建立融洽和谐的师生关系。数年来我的数学第一课,都是向学生介绍古今中外数学家的探索精神、不朽贡献;介绍数学在日常生活及科技领域的地位和作用;组织利于不同层次学生都参与的数学游戏等等;让学生感受数学本身的魅力、数学学习的乐趣。此外,讲解中小学数学的知识联系,介绍学习方法、学习要求,甚至请高年级学生现身说法,鼓励学生勇于而对现实、敢于向困难挑战,使学生对数学学习做好初步的心理准备。
其次,上好第一章,组织好第一次测试,我总是给学生来个“开门红”,获得成功体验。教师尽量放慢教学进度,使教学内容适合各个层次的学生,适当降低要求,关注那些基础稍差容易掉队的群体;又要给学有余力的群体适当的挑战,防止他们“低估”数学而放松学习。加强学生动手活动的环节,增强教学的趣味性,开发学生熟悉的生活资源,让学生感受初中数学与小学有联系、与生活有联系,有趣、有用并不难学。
对应的第一次单元测试,教师应该让一部分学生考出“优越感”,更要想法让其余学生获得意料之外的“好成绩”。还要经常对学生在学习中的各种良好表现做积极的表扬,让学生在数学学习上尽快找到成就感。
初中数学的教学,毕竟是个长期的实践过程。除以上环节外,还要求教师注重教学方法的过渡和学生学习方法的改进,使学生的数学学习持续稳步的进行。
小学到初中,而对新老师新教法,学生的学习适应是一个大的跳跃。小学数学教学,教师讲得细,练得多,直观性强;到了初中,相对来说教师讲得精,练得少,抽象性也比较强。教师应对小学的教法有所了解,结合七年级学生的年龄特征和认知规律,在稳中求变,逐步过渡,使学生慢慢适应新的教学方法,在自主、轻松、能动的氛围中实施数学教学,优化课堂教学,培养学生的动手能力,让学生在做中学、在玩中学,亲身经历数学知识的形成过程。
学生是学习的主体,教师还要帮助学生改进学习方法,转变学生的学习方式,倡导主动学习、探究学习和合作学习。通过活动探究、动手实践、情景创设、信息技术教学等途径,让学生形成想学爱学、乐学会学氛围,增强他们的学习和创新能力。
小学阶段老师扶的较多,学生比较被动。教师还要培养学生良好的数学学习习惯,逐步由被动学习变主动学习。帮助学生养成课前适当自主探究,上课有效参与,课后主动完成作业的习惯。
进入初中后,学生在数学学习方而还会遇到更多的困难,教师还要培养学生良好的学习意志。改变过去以分数论高下的单一评价方式,用多元的评价体系,从正而引导学生有效的学习。教师作为学生学习的组织者、引导者、合作者,我们有责任指导学生尽快适应初中数学的学习,不让任何一位学生因数学而掉队。
初一下数学小论文篇五
生活中,数学无处不在。建高楼要画几何图,发射火箭要经过无数的计算。
我们一般加减乘除都是由0~9十个数字构成的十进制的算是组成的,而电脑里却用了二进制。
我一直都想不明白,直到我做了这道题目:小明有511块糖,分别放在9个盒子里。你只要告诉他糖的块数,(不多于511),他就可将几个盒子里的糖全部拿出,凑成你要的块数,这几个盒子里各有多少块糖?
我有些丈二和尚摸不着头脑,怎样也想不出来。我只好一个一个排,排了5个后,我发现是一个很有规律的数列:1.2.4.8.16.都是这个数乘2得到下一个数的。我照着排下去:1.2.4.8.16.32.64.128.256,刚好为511,原来电脑里面有二进制是因为可以算出所有数呀!
我有看到了一种问题——“牛吃草”。一牧场上的青草匀速的生长,可供27头牛吃6天,工23头牛吃9天,18头牛吃了6天后增加了12头牛,还要几天吃完?牛吃草有原有量和增长量,一部分牛吃原来就有的草,一部分牛吃长出来的草,吃增长量的牛无论什么时候都有的吃,而吃原有量的牛吃完了就没有了,所以应先求原有量和增长量,27×=162(份),(将牛一天吃的草视为一份),23x9=207(份),207-162)÷(9-6)=15(份),增长量为15份,162-6×15=72(份),原有量为72份,18头牛吃6天,共吃72-(18-15)×6=54(份)草,54÷(3+12)=3.6(天),答:还要3.6天吃完。
书上也是可以获得知识的。书的页码也有学问。如:甲。乙两册书用了8642个数码,且甲册比乙册多20页,甲书有多少页?首先要知道1~页要1×9=9(个)数码,10~9需要2×90=180(个)数码,100~999需要2700个数码,(2700+180+9)×2 8642个,所以甲乙书都印到了四位数。20页有20×4=80(个)数码,甲书有(86742+80)÷2=4361(个)数码,4361-(9+180+270)=1472(个)数码,1472÷4=368(页),999+368=1367(页),答:甲书有1367页。
生活中,数学真是无处不在……
初一下数学小论文篇六
寒假,我参加了数学兴趣班,教我们的是一位年轻漂亮的女老师——陈老师。
陈老师教我们的第一节课很独特,首先她问我们的第一个问题是:“数学是什么?”,这个问题虽然简单,但是却充满着奥秘,我回答不出来,但是也有很多同学踊跃举手回答问题“数学是生活中经常运用的知识”“数学是我们思维的一种表达方式。”“数学是……”陈老师似乎比较满意,说:“同学们的回答很精彩,但是,还不完全正确,数学是研究数量、结构、变化以及空间模型等概念额一门学科。通过抽象画和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生……”
陈老师告诉我们的是数学,数学存在的意义,她说,数学不是烦躁的拼命做练习,而是锻炼我们的思维,使我们的思维越来越强,使我们对于某一件事时,可以迅速的判断。数学是一门学科,如果你对数学有兴趣,那么你的思维已经很强了。
没错,通过陈老师的教导,我们已经渐渐懂得数学的含义,数学题目中,也许有些很难,但是每解一道题,就能锻炼我们的思维。比如,陈老师让我们花半个小时去做一道题,这道题是一道初三的题目,即使你会做,也要做到半小时:
某同学在a、b两家超市发现他看中的随身听的价钱相同,书包单价也相同。随身听和书包单价之和为452元,且随身听的单价比书包的单价的4倍少8元。
求该同学看中的随身听和书包的单价各为多少元?这道题虽然很难,但是只要根据自己的理解,写出来,也可以。我们要锻炼自己的思维,提高数学能力!
初一下数学小论文篇七
让学生学好数学,就要让学生对数学方法在学习上有所认识,促进对数学知识进一步学习,数学方法是指在数学学习中学生解决数学问题使用的方法,是数学思想在数学教学中的最直接的表现。在初一数学教学中,教师要通过加强学生对数学方法的理解和应用,从而让学生对数学思想有一定了解,促进学生对数学知识的学习。
学生进入初中学习变得紧张起来,在初一数学教学中不论在数学解题思路上,还是学习知识点上都增加了一定的难度。教师在初一数学教学过程中要渗透数学思想,结合数学教学内容,提高学生在数学学习中解决问题的能力。
随着教育的不断进步,在教学过程中出现了很多新的教学方法。要想让学生学好数学,就要让学生对数学方法在学习上有所认识,促进对数学知识进一步学习,数学方法是指在数学学习中学生解决数学问题使用的方法,是数学思想在数学教学中的最直接的表现。运用数学方法解决问题的过程就是数学知识不断学习的过程,让学生在学习过程中合理运用适合自己学习的学习方法。在教学中要让学生主动进行学习,教师在教学过程中要激发学生学习数学的积极性和主动性,让学生通过独立思考,不断进行新知识的学习,在学习过程中通过分析,思考,可以自己解决问题,在教学中教师要让学生对数学知识了解、理解,学会运用,通过这三个层次学好数学。在初一数学教学中许多数学方法和数学思想是相互联系的,所以在数学教学中要让学生加强对学习方法的运用和理解,从而达到对数学知识的扎实学习。在教学中通过教师的引导学习,让学生掌握学习方法,从而掌握了在学习上的主动性,同时通过在学习过程中的实际运用,促进学生更好的进行课堂知识学习。学生对数学教学中学习方法先是经过教师指导学习,然后在学习过程中的不断练习,逐渐掌握学习方法,最后在对数学知识的掌握过程中,对形成的数学思想和学习方法进行深一步发展,通过对数学知识中问题的解决提高数学学习能力。
在教学中将知识内容与图结合起来进行学习,也就是把数学学习点和数学图形结合起来,让学生在学习过程中将知识与相关图形紧密的相结合,所以教师在教学时要让学生从图形到数字,再从数字到图形的学习,通过数与形之间的转化学习过程,把一个数学问题用具体的图形表现出来,从而让学生从中得到启发找到解题方法,利用数字和图形结合的学习方法,可以使要学习的数学知识点,从学生比较困难的学习到很轻松的学习,从教师引导学习到自己主动学习。在教学中有意识的、灵活的让学生运用数形结合的数学方法,在一定程度上能提高学生的学习能力、形象思维能力和创新能力。在课堂学习中让学生根据相应的数学问题的已知条件和结果之间所存在的一种内在联系,不光要让学生学会分析知识之间的关系,还要联系相应的数学图形,从而将数学知识间的关系和图形进行很好地结合,利用这种有效结合来让学生解决相应的数学问题,打开解题思路,找到解决问题的思考方法。在初中教学过程中,教师要适当采取适合学生学习的方法进行教学,那么就可以在学习过程中起到提高学生对数学学习积极性,进一步提高学生的学习能力。在生活中都会遇到一些图形方面的数学知识,让学生积极的把这些生活中的数形结合的例子运用到学习上来,在数学课堂中让学生更好的学习数学知识。
学生对数学知识的掌握,需要经过一定的学习过程,学生对学习方法从熟悉到多次练习,最后到掌握数学知识,进一步加强了学生解决问题的能力。学生灵活运用数学方法来解决学习中的问题,让学生在数学解题过程中加强自生学习能力。数学教师多通过数学练习题来让学生从中对数学思想真正领会,教师用提问的方式来锻炼学生具备数学思想。教师长期的正确引导使学生对数学思想有深入的研究,从而使数学教学质量上升到一个新的高度,使学生能领悟到数学思想的真正含义,学生在实践的过程中把数学知识和数学思想结合起来理解,学生有个人的数学分析和解决数学难题的能力。
总之,为了使初一学生能对数学知识更好的理解,教师要把数学思想融入到数学实际解决问题中,让学生在学习过程中真正掌握数学学习的方法,激发学生从数学例题中发现数学解题方法。教师通过组织数学活动,从活动中掌握了解数学思想的方法,运用正确的方法来提高学生数学认知能力和基础知识的掌握能力。教师在讲述不同的数学知识时,要采用不同的教学方法为学生进行教学,使学生深入透彻的了解数学学习方法、数学概念,对抽象的数学知识可以结合所学知识共同融会贯通。在教学过程中,教师结合教学内容合理进行数学方法教学,可以很好地帮助学生在数学学习中对数学问题的分析和思考能力,让学生更好的学好初一数学。