最新《比的基本性质》说课稿(十四篇)
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。那么我们该如何写一篇较为完美的范文呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
《比的基本性质》说课稿篇一
1、说课内容:
九年义务教育课程标准实验教科书六年级下册比例的意义和基本性质, 练习六的练习题。
2、说课内容的地位与作用:
这部分内容是在学生学过比的知识的基础上进行教学的,是前面“比的知识”的深化,是后面学习解比例知识的基础。它起着承前启后的作用,是小学阶段学习比例初步知识的一项重要内容。分两段来进行教学:第一段教学比例的意义,通过两个比的比值相等概括比例的意义;第二段教学比例的基本性质,让学生自己去发现比例中两个外项与两个内项的积的关系。这样便于加深学生的印象,最后总结比例的基本性质。为此,教学时先复习比的基本知识,使知识间发生迁移,再在此基础上探索新知,最后深化新知,为以后学习解比例等知识打下扎实的基础。
3、说教学目标
《新课程标准》明确了义务教学阶段数学课程的总目标应以知识与技能、教学思考、解决问题、情感和态度四方面来阐述,使学生得到充分、自由、和谐、全面地发展。因此,以《新课程标准》为依据,结合小学数学教材编排的意图,确立以下教学目标:
(1)知识与技能目标:使学生了解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
(2)能力目标:充分发挥多媒体课件的优势,启发学生的创造性思维,培养他们探索和解决问题的能力。
(3)情感与态度目标:激发学生的学习兴趣,引导学生自主参与知识探究全过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
4、教学重、难点:
教学重点:比例的意义与基本性质
教学难点:运用比例的基本性质与意义判断两个比能否组成比例。
1、说教法:
通过前面的学习,学生已经掌握了比的知识,初步形成了一定的观察、探索、归纳的能力。因此,我采用了“自主探究”的教学模式,教学中贯彻自主性原则,重视学生学习和探索过程,注重学生的情感体验;组织、指导并参与学生的探究活动,允许学生对所学知识有不同的理解和体验,提高学生的科学文化素质和技能素质。
2、说学法:
根据学生的年龄特点,引导学生观察发现,再加上适时的自学,有意识地培养学生探索新知的能力。根据学法的自主性原则,充分发挥学生的主观能动性;根据学法的差异性原则,对学生进行分类指导。
1.创设情境,导入新课:
我采用生活实例引入课题,课件出示我们祖国各地的风景图片;我们的祖国幅员非常辽阔,却能在一张小小的地图上清晰可见各地位置; “这么辽阔的地方为什么能用一张小小的地图就能清楚的表示出来呢”引发学生的探究欲望。
(设计意图:这样由地图生活实例引入课题,有利于学生体会所学知识的生活价值。以价值观的角度激发学生的求知欲望。)
然后顺势导入课题并板书:这样地图片或实物按一定的比例放大或缩小,都要用到比例的有关知识。最后出示几个比,让学生求出比值,你发现了什么?
2.自主探索,探究新知
通过求两个比的比值,发现这两个比的比值相等,用等式表示两个比的比值相等的关系,从而概括出比例的意义,然后利用比例的意义来判断两个比能不能组成比例,并通过例1中四面国旗的尺寸中,你还能哪些比?写出两个比,根据比值相等写出比例,进一步加深对比例意义的认识。同时还请学生自己说出几个比例,在此基础上运用学生说出的比例,请学生自学比例中各部分的名称,然后教师提醒学生:前面我们已经探究发现了比例的一个秘密,比例还有一个秘密,你们分成小组来找找看,并用简洁语言归纳出来。
(设计意图:这样引导学生通过自己的努力去发现比例的基本性质,整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从而提高学生的自学学习能力。)
3.讨论巩固、形成技能
(1)基本训练
(2)发展性练习
《比的基本性质》说课稿篇二
各位评委:大家好,今天我说课的内容是人教版小学六年级数学下册第三单元第一课时《比例的意义和基本性质》。下面我将自己的设计理念、对教材的解读、对目标的预设以及教学流程和板书设计向大家作简要的阐述。
这是一节概念课,但我并不是对知识简单的复述,而是通过学生的探究活动,展现学生“活生生”的思维过程。让学生通过观察比较,发现规律,从特殊到一般抽象概括出意义和性质,培养了学生主动探索知识和概括知识的能力。
《比例的意义和基本性质》是人教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
1、知识技能目标:使学生了解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
2、教学思考与解决问题目标:充分发挥多媒体教学的优势,启发学生的创造性思维,培养他们探索和解决问题的能力。
3、情感态度目标:激发学生的学习兴趣,引导学生自主参与知识探究全过程,培养学生初步的观察,分析,比较,判断,概括的能力,发展学生的思维。
重点:理解比例的意义,探究比例的基本性质。
难点:探究比例的基本性质和应用意义,判断两个比能否组成比例。
说教法
我采用”自主探究”的教学模式,贯彻自主性原则,重视学生学习和探索过程,注重学生的情感体验,组织,指导并参与学生的探究活动,允许学生对所学知识有不同的理解和体验,提高学生的科学文化素质和技能素质。
说学法
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。
一、创设情境引发思考
通过多媒体出示有关国旗的四幅情境图,让学生说说图的内容,并找找图中共有的东西。接着出示四面国旗的长和宽的具体数据,并提示国旗的制作有特定的制作标准,然后让学生去思考,猜测。
二、探究新知主动参与
这里分成二部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。
第一部分:比例的意义
1、根据学生的发现,让学生任意地选择其中的两面国旗,先写出长和宽的比,再求出比值进行验证自己的猜测对不对。
2、把学生的计算结果出示在黑板上(四面国旗都有)接着请学生仔细观察计算结果发现了什么,发现他们的比值都相等。从而引出比例的意义——表示两个比相等的式子,叫做比例。
3、揭示了比例的意义后及时进行练习(p33的做一做)。判断几组比能否组成比例,为什么?让学生说理巩固概念。
4、回到四面国旗,让学生找比组成比例。(可以是国旗的长与宽的比,也可以是每两面国旗长之比,宽之比)在这里的时候适时引导,鼓励学生打开思路,从不同的角度去寻找,以加深对比例意义的认识。
第二部分:比例的基本性质
1、教学比例的各部分名称。这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力。在学生自学课本时,引导学生注意内项和外项的位置。认识了比例的各部分名称后让学生说说比与比例的区别。
2、教学比例的基本性质。观察黑板上的比例中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果?再让学生归纳出比例的基本性质——在比例里,两个外项的积等于两个内项的积,然后探讨写分数形式,归纳“交叉相乘”积相等。
3、揭示了比例的基本性质后及时进行练习(p34的做一做)。应用比例的基本性质,判断下面两个比能不能组成比例,为什么?让学生说理巩固概念。
4、小结判断两个比能否组成比例,可以根据比例的意义,也可以根据比例的基本性质。
三、巩固练习形成技能
基础练习
1、写两个比值是4的比,并组成比例;写出两个比值是1/4的比,并组成比例;这里先让学生写,然后请其他学生判断他写的比例对不对。(可以用比例的意义,也可以用比例的基本性质)
2、猜数游戏,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是我们下节课要研究的内容“解比例”。
发展练习:
1、把乘积相等的式子改写成比例。(6×16=8×123×40=8×15)这个练习是巩固比例的基本性质,意图是让不同的学生在数学上得到不同的发展。因为有学生可能只能改写一个,而有学生可能改写4个,还有学生可能改写8个。
2、如果5a=3b,那么a:b=():()这个练习意图是让学生在有未知数的方程中学会运用比例的基本性质解决问题。
四、课堂小结回归目标
这堂课我们学习了什么,你有什么收获?
通过简单明了的数学式子反应出比例的意义和比例的基本性质。
《比的基本性质》说课稿篇三
青岛版《义务教育课程标准实验教科书·数学》五年制五年级下册第66—67页。
1、理解比例的意义,认识比例各部分名称;能利用观察—猜想—验证的方法得出比例的基本性质。
2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。
3、使学生在自主探究、合作交流的活动中,进一步体验数学学习的乐趣。
理解比例的意义和基本性质,能正确判断两个比能否组成比例。
:
自主探究比例的基本性质。
:
1、谈话
师:同学们,上学期我们学过有关比的知识,谁能说说学过比的哪些知识?
生1:比的意义。
生2:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
生3:比的前项除以后项,所得的商就是比值。
(评析:简短的几句谈话,引起了学生对已有知识的回忆,让学生“温故”而“启新”。)
1、比例的意义
师:今天我们继续学习有关比的知识。昨天大家预习了,谁来说说今天学习什么?
生:比例?(书:课题比例)
师:看到这个课题你想知道什么?
预设:
1、什么叫比例?
2、比例各部分名称?
3、比例的基本性质?
4、比和比例有什么区别?
生:什么叫比例呢?
生:(书)表示两个比相等的式子叫做比例。
师:你怎样理解这句话的意思?可以举例说明。(如果学生举不出例子,我就从比例的意义上去引导,表示两个比相等,你能写出两个比吗?怎样知道这两个比是否相等呢?指着学生举的例子说,像这样的两个比相等的式子就是比例)
师:你也能举出一个这样的例子,对吗?请你举出一个这样的例子,再给同桌说说为什么能组成比例?
(老师巡视时可以提示学生有的孩子写出了小数、分数形式的比例很好。生汇报)师板书。
师:通过以上练习,你认为这句话中哪些词最重要?为什么?
生1:两个比,不是一个比
生2:相等,这个比必须相等
生3:式子,不是两个等式是式子。
师:(投影出示)请你利用比例的意义,判断下面的比能否组成比例?
(1)0、8:0、3和40:15
(2)2/5:1/5和0、8:0、4
(3)8:2和15/2:15
(4)3/18和4/24
(学生独立判断,师巡视指导,然后汇报)
师:先说能否组成比例,再说明理由,
生:0、8:0、3和40:15能组成比例,因为0、8:0、3和40:15的比值都是8/3,所以0、8:0、3和40:15能组成比例。
同理教学:(2)2/5:1/5和0、8:0、4
(3)8:2和15/2:15不能组成比例,因为8:2和15/2:15的比值不相等,所以8:2和15/2:15不能组成比例。
师:怎样改能使它组成比例呢?
生:4:8=15/2:15或8:2=15:15/4
同理教学(4)3/18和4/24
师:像3/18和4/24是比例吗?
师:分数形式的比例怎么读?你能把这个(学生写的整数比例)改写成分数形式吗?请读一读?
2、认识比例各部分的名称。
师:我们在学比的时候知道了比有前项和后项,而组成比例的这些数也有自己的名字。谁能来说一说?
生:组成比例的四个数叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。(师板书)
师:请你指出在这个比例中(16:2=32:4),哪是它的内项?哪是它的外项?
生:2和32是它的内项,16和4是它的外项。
师:请同学们快速抢答老师指的数是比例的外向还是内项。
生:(激烈抢答):外项、、、、、、
师:同学们反应真快,分数的形式中哪些是比例的项呢?
生:2和32是内项,16和4是外项。
师:老师指分数比例学生抢答。
3、探索比例的基本性质。
师:同学们学得真不错,敢不敢和老师来个比赛?
生:(兴趣高涨):敢!
师:好,请两位同学们各说一个比,我们共同来判断能否组成比例,看谁判断的快?
师:谁来。
生1:4:5,生2:8:9不能组成比例。
生:对。
师:服气吗?不服气咱们再来一次,
生1:1、2:1、8,生2:3:5
师:不能。对吗?
生:对。
师:老师又赢了,这回服气了吧。(学生点头)
师:其实你们表现的很不错,只不过老师是用了另一种方法,才能做得又对又快,想知道是什么方法吗?
生:想。
师:其实秘密就藏在比例的两个内项和两个外项之中,就请你以16:2和32:4为例,研究一下,试试能不能发现这个秘密!老师给你们两个温馨提示:(课件出示:温馨提示:
1、可以通过观察、算一算的方法进行研究。
2、你能得出什么结论?)
师:现在请将你的发现在小组里交流一下,看看大家是否同意。
(学生讨论)
师:哪个小组愿意将你们的发现与大家分享?
生1:我们组发现16和32是倍数关系,2和4也是倍数关系,所以我们想,在比例里,一个外项和一个内项之间都存在倍数关系。
师:有道理,不错,还有其他发现吗?
生2:我们组发现16×4=6432×2=64,也就是两个外项的积等于两个内项的积。
师:你能把这个计算过程写在黑板上吗?(学生板书:16×4=64)
师:这是两个外项的积,(师板书:两个外项的积)
(学生板书:16×4=64)
师:这是两个内项的积,(师板书:两个内项的积)
师:你的意思是:两个外项的积等于两个内项的积(师板书:=)是吗?
师:其他组的同学同意他们这个结论吗?
生:同意。
(以上环节,灵活掌握,如果有的学生能直接用比例的基本性质判断,就直接问:你怎么算得那么快?生:我用两个外项的积=两个内项的积,判断它们能组成比例。是不是所有的比例两个外项的积=两个内项的积呢?怎么验证?)
师:真的所有的比例都是这样吗?怎么验证?
生:可以多举几个例子看看。
师:这是个好建议,那快点行动吧。(学生独立验证)
生:我同意,因为我用的是2:16=4:32来验证,我发现32×2=64,16×4=64、
生:我也同意,我用的是10:5=2:1,来验证,我发现10×1=10,2×5=10、
师:有没有同学举得例子不符合这个结论呢?那也就是说,所有的比例都是两个外项的积等于两个内项的积。其实这也正是比例的基本性质。同学们太厉害了。能通过举例来验证自己的发现。
4、比和比例的区别
师:我们以前学习的比,和今天学习的比例有什么不同呢?请六人小组说一说。(师巡视)
师:哪一组的代表来说一说。
生:比和比例的意义不同?两个数相除又叫做两个数的比。表示两个比相等的式子叫做比例。
生:比和比例形式不同。比是一个比,比例是两个比。
生:性质不同。比的前项和后项同时乘以或除以同一个数(0除外)比值不变。在比例里,两外项的积等于两内项的积。
5、总结:今天学习了什么?学生看着板书说,请同学们默记两遍。
1、下面每组比能组成比例吗?
(1)6:3和8:5(2)20:5和1:4
(3)3/4:1/8和18:3(4)18:12和30:20
生1:第(1)个不能组成比例,因为6×5=30,3×8=24,不相等。
生2:第(2)个不能组成比例,因为20×4=100,5×1=5,不相等。
师:怎样改一下使它们能组成比例?
生3:把20:5改成5:20,这样5×4=20,20×1=20,能组成比例。
生4:还可以把1:4改成4:1,也能组成比例。
生5:第(3)个可以组成比例,因为3/4×3=1/8×18。
生6:第(4)个可以组成比例,因为18×20=360,12×30=360。
师:看来要判断两个比能否组成比例,除了可以根据两个比的比值是否相等外,还可以根据比例的基本性质来进行判断。
2、填一填。
2:1=4:()1、4:2=():3
3/5:1/2=6:()5:()=():6
师:最后一题还有没有别的填法?
生1:5:(1)=(30):6
生2:5:(30)=(1):6
生3:5:(2)=(15):6
生4:5:(15)=(2):6
师:怎么会有这么多种不同的填法?
生:两个外项的积是30,根据比例的基本性质,只要两个内项的积也是30就可以了。
3、用2、8、5、20四个数组成比例。
师:你能用这四个数组成比例吗?
师:最多可以写出几种?怎样写能够做到既不重复也不遗漏?
生:2和20做外项,8和5做内项时有4种:
2:8=5:202:5=8:20
20:8=5:220:5=8:2
8和5做外项,2和20做内项时也有4种:
8:2=20:58:20=2:5
5:2=20:85:20=2:8
师:说一说,这节课你有哪些收获?
生1:知道了比例的意义。
生2:学习了比例的`基本性质
生3:我知道了要判断两个比能否组成比例可以根据意义判断,也可以根据比例的基本性质判断。
师:这节课哪个地方给你留下的印象最深刻?
《比的基本性质》说课稿篇四
教科书第9—10页比例的意义和基本性质.练习四的第1—3题。
使学生理解比例的意义和基本性质。
1.复习。
(1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。
(2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?
教师板书出下面几组比,让学生求出它们的比值。
12:16 :1 4·5:2.7 10:6
学生求出各比的比值后,再提
“请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?
这就是这节课我们要学习的内容。(板书课题:比例的意义)
2.教学比例的意义。
(1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。
教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)
“你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。
板书:第一次所行驶的路程和时间的比是80:2
第二次所行驶的路程和时间的比是200:5
然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40, 200:5=40。让学生观察这两个比的比值。再提问:
“你们发现了什么?”(这两个比的比值都是40。)
“所以这两个比怎么样?”(这两个比相等。)
教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2=200:5或 = )像这样(指着这个式子和复习题的式子4. 5:2.7=10:6)表示两个比相等的式子叫做比例。
指着比例式80:2=200:5,提问:
“谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。
“从比例的意义我们可以知道.比例是由几个比组成的?这两个比必须具备什么条件:因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的 比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一限看出两个比是不是相等?可以先分别把两个比化简以后再看。例如判断10;12和35:1:这两个比能不能组成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上举例边说边板书。)
(2)比较“比”和“比例”两个概念。
教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(3)巩固练习。
①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表 示;不能就用两手的食指交叉表示。)
6:3和12:6 35:7和45:9
20:5和.16:8 0.8:0.4和 : :
学生判断后,指名说出判断的根据。
②做第10页的“做一做”。
让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。
③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。
④做练习四的第3题。
对于能组成比例的四个数,把能组成的比例写出来:组成的比例只要能成立就可以。
第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。
1.教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书第10页看第6行到9行。看看什么叫比例的项、外项、内项。(学生看书时,教师板书:80:2=200:5)
指名让学生指出板书出的比例的外项、内项。随着学生的回答教师接着板书如下:
80 :2=:200 :5
内项
外项
2.教学比例的基本性质。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400
两个内项的积是2×200=400
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。
“通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。
最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =
“这个比例的外项是哪两个数呢?内项呢?”
“因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200
3.巩固练习。
教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
(1)应用比例的基本性质判断3:4和6:8能不能组成比例。
教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以
3:4和6:8可以组成比例。(边说边板书:3:4=6:8)
(2)做第11页“做一做”的第1题。
教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?
练习四的第2题。
《比的基本性质》说课稿篇五
1.教学内容:
《比例的意义和基本性质》是人类教育版第十二册第三单位第一、二课时的内容。比例知识广泛应用于工农业生产和日常生活中。这部分知识是在学习比例知识、除法和分数的基础上教授的。本课程的内容是本单位的第一节课,主要属于概念教学,准备解决未来的比例,解释正反比例。学生学习这部分知识,不仅可以初步接触函数的想法,还可以用来解决日常生活中的一些具体问题。
2、教学目标:
以下教学目标可根据新课程标准的要求和教材的特点,结合六年级学生的实际水平确定:
(1)通过计算、观察和比较,让学生总结和理解比例的意义和基本性质。
(2)了解比例各部分的名称。
(3)学会用比例的意义或基本性质来判断两个比例是否能形成比例,并写出比例。
教学重、难:
要理解比例的意义和基本性质,我们将判断比例的意义和基本性质是否可以形成比例,并写出比例。
四、教法、学法:
根据本节教材的内容和安排特点,为了更好地突出重点和难点,遵循以教师为主导、以学生为主体、以培训为主线的指导思想,主要让学生在计算观察、比较、总结、应用的学习过程中掌握知识。
课堂教学是学生获得数学知识和发展能力的重要途径。基于此,我设计了以下教学设计。
(一)复习导入
让学生根据给出的信息写两个比例。目的是为新教学铺平道路,搭建脚手架,为学生区分比例和比例奠定基础。
(二)教新课
分为两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。
第一部分:首先显示几个比例,让学生计算他们的比例,然后通过观察和比较对这些比例进行分类。通过学生自己的观察和发现,根据比例是否相等进行分类。然后问:两个比例的比例是相等的,那么它们之间可以连接到什么符号呢?这是为了让学生深刻地理解,只要两个比例的比例相等,就可以说两个比例相等。使用黑板上的几个比例,告诉学生这样的公式被称为比例,给学生一个直观的印象,然后列出一个反例,让学生比较观察,引导学生发现他们之间的共同特征,抽象地总结比例的意义。教学比例的意义后,及时组织实践。第一个是判断导入部分的四个比例是否可以形成比例,并解释原因。第二个练习是判断两个比例是否可以形成比例。在这个过程中,不仅使用了比例的意义,而且对比的性质也有一定的应用,以培养学生从多个角度解决问题的能力。第三个练习是每个比例的延伸,每个练习都是为了解决问题的能力。
第二部分:当我知道比例的名称时,我让学生看课件自学,然后让他们谈谈比例的名称。
在揭示比例的基本性质时,我先让学生计算,然后观察和发现规则,进一步验证规则,最后总结比例的基本性质。
(三)巩固练习
在巩固实践过程中,第一个问题是三个判断问题,即巩固基本概念。第二个问题是根据比例的基本性质写出比例。这里需要从学生逆向思维的角度来解决问题。第三个问题是使用四个数组的比例。学生在小组过程中没有方法和顺序。在沟通过程中,教师需要引导学生找到方法,总结规则,使学生不仅能正确地解决问题,还能引导自己更好地解决问题。第四个问题是扩展问题,让学生根据当前的知识猜测,一方面巩固知识的意义和基本性质,另一方面,为下一节课解决比例铺平道路:根据比例的基本性质,如果你知道任何三个比例,你可以找到另一个,这是下一节课要研究的解决比例。
有意义的数学学习必须以学生的主观愿望和知识经验为基础。有效的数学学习活动不能仅仅依赖于模仿和记忆。实践、独立探索和合作交流是学生学习数学的重要途径。在教学中,我有效地处理了教科书,让学生理解比例的意义,探索比例的基本性质,了解生活的比例,进一步认识到数学在生活中的广泛应用,激发学生学习数学的信心和积极情绪。
一、创设探究空间,经历探索过程
我大胆地组织学生探索比例的基本性质,没有根据教科书中提供的现成问题你发现了什么分别计算两个外项和两个内项的比例?机械地实施,但大胆地放手,用四个数组成等式的开放实践产生新鲜有用的教学资源。通过引导学生进行讨论和有效的探索,我经历了探索的成功。
二、找到知识与生活的契合点,学以致用
为了充分体现数学知识与现实生活的联系,我在课堂结束时安排了与生活相关的数学问题,让学生测量我们学校旗杆的高度,将数学与现实紧密联系起来,这不仅渗透了学习数学的教学理念,而且潜移默化地帮助学生树立学习文化知识有利于社会发展的意识
《比的基本性质》说课稿篇六
1、说教材《比例的意义和基本性质》是人教版小学数学六年级下册第四单元的内容,这部分内容是在学习了比的有关知识并掌握了一些常见的数量关系的基础上进行教学的,是前面“比的知识”的深化,也是后面学习解比例知识的基础,并为学习比例的应用,特别是为正、反比例及其应用打好基础。比例的知识在生活和生产中有着广泛的应用,所以本节课的知识就显得尤为重要。
2.教学目标我以《新课程标准》为依据,结合小学数学教材编排的意图和学生的实际情况,拟定以下教学目标:
(1)知识与技能目标:使学生理解并掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。
(2)能力目标:培养学生自主参与的意识和主动探究的精神,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
(3)情感与态度目标:在教学中渗透爱国主义教育,培养学生善于观察、勤于思考、乐于探究的学习习惯。
3、教学重点、难点
教学重点:理解比例的意义与探究基本性质。
教学难点:运用比例的意义或性质判断两个比能否组成比例,并能正确地组成比例。
1、说教法通过前面的学习,学生已经掌握了比的知识,初步形成了一定的观察、探索、归纳的能力。因此,我采用了“自主探究”的教学模式,教学中贯彻自主性原则,重视学生学习和探索过程,注重学生的情感体验,组织、并参与学生的探究活动。
2、说学法在强调教法的同时更注重学生学习方法的指导,在本节课中,我主要指导学生运用以下学习方法:自学法。引导发现发。教具和学具是学生探索知识的工具和桥梁,课前准备合适的教学具也关系到一节课的成败。因此,这节课教具准备:多媒体课件
课堂教学是学生获得知识、发展能力的重要途径。基于此,我设计了如下的教学流程:复习旧知,做好铺垫——教学比例的意义——教学比例的基本性质——反馈与巩固——质疑反思,总结评价。
(一)复习旧知,做好铺垫
1、概念复习:回忆什么是比?比的各部分名称是什么?比的基本型性质是什么?什么是比值?怎样求比值?然后出示4个比让学生求比值。
2、求出下面每个比的比值12:163/4:1/85、4:2、710:6(设计意图:通过对比的知识的复习,唤起了学生对已有知识的回忆,加深学生对旧知的印象;通过求比值的练习,使学生既复习了旧知,又为教学比例的意义作了巧妙的铺垫。)谈话:我们已经认识了比,知道怎样求比值。今天我们就根据这些知识来学习新的内容。板书课题(比例的意义和基本性质)
(二)教学新课分成两部分:
第一部分,教学比例的意义;
第二部分,教学比例的基本性质。
第一部分教学比例的意义
1、(多媒体课件出示)第40页的三幅图:天安门升国旗仪式;校园升旗仪式;教室场景。请同学们认真观察这三副图,你都知道了哪些信息?(生:都有国旗,是国家的象征,我们必须尊重它)。(设计意图:教师利用多媒体手段播放课件,创设大小不同的国旗引入比例的意义,主要体现知识由实际问题产生。适时地对学生进行爱国主义教育,增强他们的爱国意识)师:利用多媒体把图变换成三面国旗的画面,并表上长和宽的尺寸,请同学们写出他们长与宽的比。(比可以用两种形式表示出来,为后面的学习比例用分数形式表示做好铺垫)。接着追问:“两个比的比值相等
2、动手计算,探究比例的意义师:接下来选取其中的两个比,求出它们的比值,你发现了什么?“那你能不能从中任选两个相同的比把它组成等式呢?”然后学生汇报。最后师生总结比例的意义:像这样表示两个比相等的式子叫做比例。(并板书)(设计意图:教学中通过观察、求比值等方式是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,抽象概括出比例的意义。帮助学生建立明晰的概念,把握概念的内涵。)
3.辨析比和比例师:1:2是比例吗?为什么?你能把它组成一个比例吗?还可以写成什么样的形式?(辨析的过程其实就是学生对新知进一步理解的过程,通过1:2是比例吗?这一问题,激发学生的思维,使其自主去辨析新知与旧知的区别,从而更准确地理解比例的意义,并通过“你能把它组成一个比例吗?”问题的启动,使学生展开了更丰富的比例应用的想象空间,拓展了学生的思维。)
4.利用新知,学以致用师:教学比例的意义后,及时组织练习。判断两个比是否能组成比例(这一环节中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的能力。)
第二部分:探究比例的基本性质
1、组织看书,认识名称我们已经知道比的各部分名称,那么组成比例的四个数也都有自己的名称,你们知道它们叫什么吗?自学课本41页,并汇报交流说出黑板上组成比例的四个数中各部分的名称,并板书。(设计意图:学生自学比例的各部分名称,把学习的主动权还给他们,既培养了他们的自学能力,又处理好了讲授与自学的关系。)
2、进行验证,确定性质师:观察黑板上的比例式,你能发现比例的外项之积和内项之积之间有什么关系吗?可以动手计算。汇报交流:两个外项的积是2.4×40=96、两个内项的积是1.6×60=96。两个外项的积等于两个内项的积。师:是不是每一个比例的两个外项与两个内项都具有这种规律,请另选几个比例验证一下。(学生验证自己的发现)师:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?(将比例写成分数形式,把内项与内项、外项与外项分别用箭头连接,使学生形象的看到用分数形式表示的比例式中,如何计算两个内项及两个外项的积。)
3.指导学生概括出比例的基本性质师:通过以上研究,你发现了什么?经过验证得出,在比例里“两个外项的积等于两个内项的积”这就是比例的基本性质。(板书)(设计意图:比例的基本性质是本节课的重点之一,如何突出重点是教学时首先要解决的问题。我把知识的探究过程留给了学生,让学生在自己算一算的基础上,大胆猜测,合情推理,并在教师的引导下归纳出规律性的结论,充分尊重学生主体,将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。)
4、巩固练习在巩固练习环节中,第1题是对基本概念的巩固,根据比例的基本性质判断下面的比能否组成比例,并把组成的比例写出来,第2题是写出比值是5的两个比,并组成比例。第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么在交流过程中就需要教师去引导学生发现方法,总结规律,使学生不仅把题做对,而且指导自己更好解决问题。(设计意图:三个练习,每一个都在逐步地延伸,意在达到熟练运用比例的意义解决问题的能力。)师:学到这里,你已经学习了几种判断两个比能否组成比例的方法?
1、同学们,今天你学会了什么?
2.你能比较一下“比”和“比例”有什么联系与区别吗?(使学生畅谈收获,让学生对所学的知识及时查漏补缺,同时培养学生的总结概括能力,训练学生的语言表达能力。)(说出比和比例的区别,有助于帮助学生建立新旧知识的联系和区别,更进一步理解新知。)
我的板书简洁、大方,体现了本节课所学知识的重点,展示了知识的形成的过程,使学生学到的知识更加系统化、完整化。
《比的基本性质》说课稿篇七
1、知识与技能:认识比例,知道比例的的内项和外项,理解和掌握比例的基本性质,会判断两个比能否组成比例。
2、过程与方法:通过自主探究、合作交流、观察、比较,培养学生分析、比较、抽象和概括的能力,经历认识比例和比例的基本性质的过程。
3、情感态度与价值观:体会国旗中隐含的数学规律,丰富关于国旗的知识,培养学生爱国旗、爱祖国的情感。
理解比例的意义,探究比例的基本性质。
探究比例的基本性质和应用意义,会判断两个比能否组成比例。
同学们,五星红旗是中华人民共和国的象征。每当周一升国旗时,我们心中充满了对祖国的热爱和作为一个中国人的自豪。热爱国旗就是热爱祖国,国旗对我们这么重要,你们想不想更多地了解一些国旗的知识呢?
1、出示三幅场景图(见教材第40页主题图)
2、提问,你们知道每一幅图中国旗的长和宽是多少吗?(出示课件)
3谈话:在制作国旗的尺寸的过程中也存在有趣的比。同学们可以算一算这三幅国旗的长和宽之比,并求出比值。
4、汇报,教师依次出示
(一)比例的意义
(1)观察这三组数据,你有什么发现?
(2)看三组数据,能否从中选出两个比组成等式呢?
(3)学生汇报,教师任选其中的板书
(4)师:肯定学生的回答后指出,像这样的等式我们还可以继续写下去。这样两个比相等,我们就可以说这两个比可以组成比例。(出示)这就是比例的意义也是我们今天所要学习的一个重要内容。
(5)引导学生再次理解意义并强调,两个比相等,并让学生说说什么是比例?
(6)试写比例的分数形式。
2、根据意义,判断比例
下面哪组中的两个比可以组成比例?把组成的比例写出来。
(1)学生独立完成。
(2)指名汇报。
(3)师:20:5和1:4为什么不能组成比例?那么你能想办法给20:5找个朋友组成比例吗?想一想,这样的朋友能找几个?你认为找到朋友的共同特点是什么?也就是说要符合什么条件?
小结后强调指出,判断两个比能否组成比例,关键是看它们的比值是否相等。
(二)比例的基本性质
师:我们知道比中两个数分别叫做比的前项和后项。今天我们学习的比例中的四个数也有自己的名字,你们知道它们分别叫什么吗?(和学生介绍内项和外项)。
(1)写出一组比例,让学生指出各部分的名称。
(2)如果把比例写成分数的形式,你能找出它的内项和外项吗?
生独立指出比例的内项和外项。
1、活动探究总结性质
谈话:比例表示两个比相等的式子,就像除法有商不变的性质一样,比例也有它特有的性质,会是什么呢?我们可以怎样研究?
(1)请你试着写出一些比例:
(2)问题:观察比例式,两个外项与两个内项之间有什么关系?想想、写写、算算,看你有什么发现?(可以提示学生分别算出两个外项和两个内项的和,差,积,商,看看有没有一定的规律)
(3)学生探究,教师巡视,收集资源。
(4)探究:你发现了什么?怎么发现的?
(5)验证:有了这样的发现之后,你有什么问题呢?
(6)可以得出什么?(比例的性质)
(7)提问:如果把比例写成分数的形式,比例的基本性质会出现什么形式呢?
2、运用性质
(1)提问:判断比例是否成立,你是根据什么判断的?有几个方法?
(2)出示一些练习,判断哪一组中的两个比可以组成比例?
1、本节课学习了什么?
《比的基本性质》说课稿篇八
1、教学内容:
《比例的意义和基本性质》是西南师大版小学数学六年级下册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了除法、分数等的基础上教学的,是本套教材教学内容的第三个单元。而本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。同学学好这部分知识,不只可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。小学数学《比例的意义和比例基本性质》说课稿
2、教学目标:
根据新课标要求和教材的特点,结合六年级同学的实际水平,可以确定以下教学目标:
(1)通过计算、观察、比较,让同学概括、理解比例的意义和比例的基本性质。
(2)认识比例的各局部名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
3、教学重、难点:
理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
4、教法、学法:
根据本节教材内容和编排特点,为了更好地突出重点,突破难点,依照同学的认知规律,遵循教师为主导,同学为主体,训练为主线的指导思想,主要让同学在“计算——观察、比较——概括——应用”的学习过程中掌握知识。
课堂教学是同学学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的优秀教案。
(一)复习导入
让同学根据所给信息写出四个比。目的就是为新授进行铺垫,搭建脚手架,同时也为同学后面区分比例和比打下基础。
(二)教学新课
分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。
第一部分:先出示几个比,让同学计算它们的比值,然后通过观察、比较,给这些比分类。通过同学自身的观察、发现,根据比值是否相等来分类。接着追问:“两个比的比值相等,那他们之间可以用什么符号连接呢?”是让同学深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉同学表示两个比相等的式子叫做比例,另外结合教材引导学生观察,在一个比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。给同学直观的印象,然后列举几个例子,让同学对比观察,引导同学认识比例的外项和内项以及他们之间的一些特点,并适时组织练习。
第二部分:在认识比例的各局部名称后,我借助多媒体课件,让他们自身说说比例里各局部的名称。通过观察讨论总结出比例的基本性质:在一个比例中,两个外项的积等于两个内项的积,叫做比例的基本性质。在揭示比例的基本性质时,我先让同学计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。
(三)巩固练习
在巩固练习环节中,第1题是用2,3,4,6四个数组成比例,是对基本概念的巩固。第2题是根据比例的基本性质写出比例,这里需要从同学逆向思维的角度去解决问题。第3题是拓展题,让同学根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,假如知道了比例中的任何三项,就可以求出另外一项,这是下节课要研究的内容“解比例”。 最后通过例题和练习进行巩固这节课所学的内容。最后我进行了课堂总结, /soft/让学生自己归纳:本节课你有什么收获?你还有什么疑惑?起到了画龙点睛的作用。 在一堂课结束之前,我还安排了一定的作业时间,既当堂检查了教学效果,又减轻了学生的课后负担,并在作业时,我进行了个别辅导,让后进生能得到进一步的理解和掌握。
学习无止境,在今后的教学中,我会更加努力地钻研教材、设计教法,力争使每一节数学课都能达到理想的教学效果。最后我忠心希望各位领导、老师多提宝贵意见,谢谢大家!
《比的基本性质》说课稿篇九
1、教学内容:
《比例的意义和基本性质》是浙教版数学第十二册的内容。比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等得基础上教学的,是本套教材教学内容的最后一个单元。而本节课内容主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。
2、教学目标:
根据新课标要求和教材的特点,结合六年级学生的实际水平,确定以下教学目标:
(1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。
(2)认识比例的各部分名称。
(3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。
培养学生自主参与意识、自主探究的精神,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
3、教学重、难点:
(1)教学重点:理解比例的意义和基本性质。
(2)教学难点:应用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。
课堂教学是学生学习数学知识的获得,能力发展的重要途径。基于此,我设计了如下的教学设计。
(一)复习导入。
先复习比的一些知识,什么叫比?什么叫比值?然后出示四个比让学求比值。揭示课题。
(二)教学新课。
分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。
第一部分:先出示例1,让学生写出比,再计算它们的比值,然后观察、比较,发现比值相等,问:“那他们之间可以用什么符号连接呢?”是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象。教学比例的意义后,及时组织练习。第一个是判断导入部分的四个比能否组成比例,并说明理由。第二个练习是,判断两个比是否能组成比例,在这个过程中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的能力。第三个练习是写出比值是0。4的两个比,并组成比例。三个练习,每一个都在逐步的延伸,意在达到熟练运用比例的意义解决问题的能力。
第二部分:在认识比例的各部分名称时,从比较比和比例有什么区别引出比例各部分的名称。
在揭示比例的基本性质时,我先让学生计算,然后观察发现规律,进一步验证规律,最后概括出比例的基本性质。接着就做些练习对所学的知识进行巩固及应用。特别强调了已知两个外项的积等于两个内项的积,利用这个式子改写成比例。
《比的基本性质》说课稿篇十
比例的基本性质
1.使学生进一步理解比例的意义,懂得比例各部分名称。
2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。
3.能运用比例的基本性质判断两个比能否组成比例。
比例的基本质性。
发现并概括出比例的基本质性。
1.什么叫做比例?]
2.应用比例的意义,判断下面的比能否组成比例。
0.5:0.25和0.2:0.4:和5:2:和:0.2:和1:4
3.用下面两个圆的有关数据可以组成多少个比例?
如(1)半径与直径的比:=
(2)半径的比等于直径的比:=
(3)半径的比等于周长的比:=
(4)周长与直径的比:=
1.比例各部分名称。
(1)教师说明组成比例的四个数的名称。
板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:2.4:1.6=60:40
内项
外项
(2)学生认一认,说一说比例中的外项和内项。
如::=:
外内内外
项项项项
2.比例的基本性质。
你能发现比例的外项和内项有什么关系吗?
(1)学生独立探索其中的规律。
(2)与同学交流你的发现。
(3)汇报你的发现,全班交流。
板书:两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
外项的积等于内项的积。
(4)举例说明,检验发现。
如::0.5=1.2:
两个外项的积是×=0.6
两个内项的积是0.5×1.2=0.6
外项的积等于内项的积。
如果把比例改成分数形式呢?
如:=
2.4×40=1.6×60
等号两边的分子和分母分别交叉相乘,所得的积相等。
(5)归纳。
《比的基本性质》说课稿篇十一
教材第30~31页比例的意义和基本性质,练习六第1~5题。
使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。
理解比例的意义和基本性质。
用比例的意义或性质判断两个比成不成比例。
以学生为主体,把较多的时间和空间留给学生探索、交流、概括。
小黑板,教学课件
l.什么叫做两个数的比?请你说出两个比。(教师板书)
2.什么是比的比值?上面两个比的比值是多少?
3.引入新课。
我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)
1.教学比例的意义。
让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)
(1) 3 :5 24 :40 (2) :7.5 :3
追问:比值相等,说明每组里两个比怎样?
指出:表示两个比相等的式子叫做比例。
说一说,上面两个等式表示的是怎样的式子?
2.下面两个比之间的哪些○里能填“=”,为什么?
1 :2○3 :6 0.5 :0.2○5 :2
1.5 :3○15 :3:2○:1
提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。
3.教学例1。
出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。
让学生根据比例的意义,在( )里填上适当的数。
3 :6=5 :( ) 0.8 :( )=1 :
4.教学比例的基本性质。
向学生说明比例各部分的名称。
让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。
5.判断能否组成比例。
出示“3.6 :1.8和0.5 :0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?
强调指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
如果学生有困难,启发用比值相等的方法推算。填写以后,学生回答:为什么填这个数?
让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?
1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?
2. 完成“练一练”。
指名4人板演.集体订正.说说是怎样判断的?
3.做练习六第1题。
让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明“为什么”。
4.做练习六第2题。
让学生判断,在练习本上写出来。提问:哪一个比和:4组成比例?为什么,(比值相等,或化简后两个比相同)
5.完成练习六第3题。
学生先观察、计算,然后口答,说明理由。
这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?
练习六第4、5题。
《比的基本性质》说课稿篇十二
比例的意义
使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
比例的意义。
找出相等的比组成比例。
1、什么是比?
(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。
300:5=60:1
(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。
1.2:1.4=12:14=6:7
2.求下面各比的比值。
12:16:4.5:2.710:6
1.教学例1。
(1)实物投影呈现课文情境图。(不出现国旗长、宽数据)
①说一说各幅图的情景。
②图中有什么相同之处?
(2)你知道这些国旗的长和宽是多少吗?
①出现各图中国旗的长、宽数据。
②测量教室里国旗的长、宽各是多少厘米。
(3)(指教室里的国旗)这面国旗的长和宽的比值是多少?
学生回答教师板书:
60:40=
(3)操场上的国旗的长和宽的比值是多少?与这面国旗有什么关系?
①学生回答长、宽比值。
2.4:1.6=
②两面国旗的长和宽的比值相等。
板书:2.4:1.6=60:40
也可以写成=
(5)什么是比例?
在这一基础上,教师可以明确告诉学生比例的意义,并板书:
表示两个比相等的式子叫做比例。
(6)找比例。
师:在这四面国旗的尺寸中,你还能找出哪些比可以组成比例?
过程要求:
①学生猜想另外两面国旗长、宽的比值。
②求出国旗长、宽的比值,并组成比例。
③汇报。
如:5:=15:10=
5:=15:105:=2.4:1.6
==
2.做一做。
完成课文“做一做”。
第1题。
(1)什么样的比可以组成比例?
(2)把组成的比例写出来。
(3)说一说你是怎么找的。
(4)同学之间互相交流,检验各自所写的比例。
第2题。
(1)学生独立写比例,看谁写得多。
(2)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
3.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
完成课文练习六第1~3题。
四作业
课后记:
《比的基本性质》说课稿篇十三
比例的意义和基本性质。
使学生理解比例的意义,会用比例的意义正确地判断两个比是否 成比例,使学生理解比例的基本性质。
理解比例的意义和基本性质。
灵活地判断两个比是否组成比例。
投影机等。
1、什么叫做比?什么叫做比值?
2、求出下面各比值,哪些比的比值相等?
12:16 : 4.5:2.7 10:6
1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。
2、引入新课。
1、教学比例的意义。
(1)引导学生观察课本的表格后回答:
a、第一次所行驶的路程和时间的比是什么?
b、第二次所行驶的路程和时间的比是什么?
c、这两次比的比值各是什么?它们有什么关系?
板书: 80:2=200:5 或 =
(2)引出比例的意义。
a、表示两个比相等的式子叫做比例。
b、讨论:组成比例必须具备什么条件?如何判断两个比是不是组成比例的?比和比例有什么区别?
c、判断两个比能不能组成比例,关键是看两个比的比值是否相等。
d、做一做。(先练习,后讲评)
2、教学比例的基本性质。
(1)看书后回答:
a、什么叫做比例的项?
b、什么叫做比例的外项、内项?
(2)引导学生总结规律?
先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。
3、练习:判断下面的哪组比可以组成比例。
6:9和9:12 1.4:2和7:10
第一、二题。(指名回答,集体订正)
今天我们学习了什么?
比例的意义和比例的基本性质及怎样判断两个比是否可以组成比例的方法。
第二题。
《比的基本性质》说课稿篇十四
知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。
过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。
态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。
重点: 理解比例的意义和基本性质。
难点:判断两个比是否成比例。
1. 复习导入:
(1)什么叫做比?
两个数相除又叫做两个数的比。
(2)什么叫做比值?
比的前项除以比的后项所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
谈话:今天我们要学的知识也和比有着密切的关系。
2、创设情境,提出问题。
谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学
出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。
这是它两天的运输情况:
一辆货车运输大麦芽情况
第一天 第二天
运输次数 2 4
运输量(吨) 16 32
根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。
谈话:谁来交流?跟大家说一下你的问题是什么?
学生可能出现以下的问题:
货车第一天的运输量与运输次数的比是多少? (16 : 2)
货车第二天的运输量与运输次数的比是多少?(32 :4)
货车第二天的运输量与第一天运输量的比是多少?(32 :16)
(师根据学生的回答,将答案一一贴或写于黑板)
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、认识比例及各部分名称。
谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)
思考:这个比值所表示的实际意义是什么?(每次的运输量)
既然它们的比值相等,那我们可以用什么符号将两个比连接起来?
学生用等号连接,并请学生把这个式子读一下。
试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)
介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2.32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。
学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。
自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)
2、比和比例有什么区别?
比
4︰6
比例
2︰3=4︰6
3.判断下面两个比能否组成比例?
6∶9 和 9∶12
总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。
4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?
那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!
5、学生先独立思考,再小组交流,探究规律。
出示研究方案:
①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。
②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。
③通过以上研究,你发现了什么?
6、全班交流。
(1)哪个小组愿意将你们的发现与大家分享?
(2)还有其他发现吗?
(3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?
7、验证发现,共享成功。
师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)
8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。
9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。
10、比例的基本性质的应用:
应用比例的基本性质,判断下面两个比能不能组成比例.
6∶3 和 8∶5
方法:
a、先假设这两个比能组成比例
b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。
c、根据比例的基本性质判断组成的比例是否正确。
1、判断下面每组中两个比能否组成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
让学生根据比例的意义进行判断,教师结合回答板书:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、连线:自主练习第3题。
3、填空:自主练习第6题。
4、自主练习第10题:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。
2、3、4 和 6
因为 2 × 6 = 3 × 4 所以这四个数可以组成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
练习时,给学生充足的时间让学生独立完成,然后交流沟通。
在这节课中你又有什么新的收获?