数学教学设计方案(13篇)
为有力保证事情或工作开展的水平质量,预先制定方案是必不可少的,方案是有很强可操作性的书面计划。方案书写有哪些要求呢?我们怎样才能写好一篇方案呢?下面是小编精心整理的方案策划范文,欢迎阅读与收藏。
数学教学设计方案篇一
1、使学生体验数据的收集、整理、描述和分析的过程,初步了解统计的意义,会用简单的方法收集和整理数据。
2、使学生初步认识条形统计图(1格表示2个单位)和统计表,能根据统计图中的数据提出并回答简单问题,培养学生思维能力。
3、通过对学生身边有趣事例的调查活动,激发学生学习的兴趣,培养学生的合作意识和实践能力。
体验数据的收集,整理、描述和分析的过程。
把收集的信息转化为统计表和条形统计图。
小黑板、统计图、统计表、图片、水彩笔等。
一、创设情景,生成问题
1、老师这里有三种图形有三角形、正方形和圆形,数量比较多,请同学们帮帮老师数数各种图形分别有多少个。
学生活动数图形。
2、现在老师想知道,哪种图形最多?哪种图形最少?怎么办呢?(把各种图形统计出来)
导入:今天,我们继续学习有关统计方面的知识。
二、探索交流,解决问题
1、自己思考:你准备用什么方法统计各种图形的数量呢?
2、班内交流:你准备用什么方法统计出各种图形数量?
生:数数、画○、画△、画□、画√、画“正”字……
3.小组合作:用最喜欢的方法把各种图形数量统计出来,并把统计的数据填在统计表中。
图形
△
□
○
个数
4、绘制条形统计图:
(1)引导学生观察:什么图形较多,提供的方格不够,怎么办?
(2)学生思考:如何才能在下面的统计图中表示统计的人数?
(3)班内交流:学生自己的想法。
(4)在此基础上总结:可以用1个方格代表2个人,以后随着统计数据的增大,1个方格代表5、10等更大的单位。
(5)根据统计的结果,在统计图的方格中涂色。
(6)展示学生作业,并问为什么这样涂色?让学生说明涂色的理由。
5、学习例1
(1)同学们都喜欢什么动物!请你说一说,你最喜欢哪些动物?为什么喜欢?
(2)老师这里有四种动物卡片(展示图画:小猫、小狗、小兔、小乌龟),你喜欢什么动物,请说一说。
(3)老师这里有某个学校的二年级喜欢动物的情况的统计数据。
喜欢动物的统计数据表
动物
小猫
小狗
小兔
小乌龟
人数
8
10
16
6
(4)学生活动比赛绘制条形统计图(选出前五名的作品展示)
教师提供条形统计图有1格表示1个数量和1格表示2个数量的,让学生自已选择用哪种。(总结出用1格2个数量的较好)
请学生说说发现了什么?
6、看统计图回答简单的问题
(1)老师提问题,学生回答。
(2)你还能提出哪些问题?并解答。
三、巩固应用,内化提高
1、完成课本95页“做一做”
(1)说一说,自己喜欢的体育运动?
(2)跑步、跳绳、游泳这三项体育运动你喜欢哪些体育运动?
(3)在教师的引导下学生小组合作统计数据。
(4)在统计图的方格中途色。(学生独立完成)
(5)提出并回答简单的问题。
2、做练习二十二的第1题:学生独立完成,教师巡视了解学生的做题情况。
四、全课总结
通过这节课的学习,你有什么收获呢?生说。
五、作业布置
选用课堂课时上的作业
统计是数学课程标准规定的四个领域之一, 它在日常生活、生产和科研中有着很广泛的应用。统计的.思想方法是数学的一个重要的思想方法。对于二年级学生来说,这节《统计》课,主要是在于通过对问题情境的探索,使学生经历简单的数据收集和整理的过程,经历把整理出来的数据用图表形式表现出来的过程,经历对统计的数据进行分析、判断的过程,从中理解并掌握一些有关统计的基础知识和基本技能,学习解决实际问题。初步认识条形统计图(1格表示1单位、表示2单位或更多的单位)和简单的统计表。
1、整个教学过程中,我采用教科书所给的材料,结合我自编的内容,创设了一个数图形的情境,并让整个情境贯穿于课的始终,数图形与学生生活紧密相关,利用三角形、正方形和圆形,一年级的学生容易数出图形的数量,学生的就有了学习的兴趣,很快地进入新知的探求过程。由此可见,兴趣还真是学生乐学的法宝!
2、新课改以来,合作学习成为小学课堂上的一大“亮点”,但很多小组合作学习流于形式的较多,为了避免此类情况发生,在进行“数图形”的统计时,先让学生独立地想一想,找到自己解决问题的办法:统计图形可以用什么方法统计(如:画“正”、打“√”、数一数等),再组织学生小组合作进行统计,然后让展示学生统计结果;在这一过程中,我让学生进行小组合作进行统计,但是学生没有做好小组合作学习,只是独立进行统计。小组合作学习只流于形式,没有真正落到实处。
3、整堂课,我都以低年级学生能接受并喜欢的面貌出现在他们面前:亲切,平易近人,语言温和;并时常以微笑鼓励学生,学生在课堂上的思路基本都跟着我走了,同时时刻关注学生的一言一行,让活动富有童真童趣,让学生是在快乐的学习,在学生的全体参与中学到了所要掌握的知识。
数学教学设计方案篇二
1.认知目标:感知正方形、圆形和三角形的基本特征,不受其他因素影响辨认三种图形。
2.技能目标:能根据图形的特征在众多图形中找出正方形、圆形和三角形,并进行分类铺路。
3.情感态度目标:发现形状的有趣,对形状产生兴趣。
感知正方形、圆形和三角形的基本形状特点。
能根据图形的特征在众多图形中找出正方形、圆形和三角形,并进行分类铺路。
活动准备
1.经验准备:活动前,幼儿已基本认识正方形、圆形和三角形。
2.物质准备:课件,大小颜色不同的正方形、圆形、三角形和梯形等图形若干,生活中正方形、圆形和三角形物体图片若干,城堡、大象、鱼和小鸡图片。
(一)开始部分:
教师、幼儿随《图形歌》音乐做律动入场。
(二)基本部分
1.观看图片、听故事导入,激起幼儿兴趣,引出主题“形状”。
师:(出示城堡图片)看,这是什么?里面会住着谁呢?
故事:在这座漂亮的城堡里,住着一只非常可爱的兔宝宝,今天呀,是兔宝宝的生日,于是它邀请了自己的三位好朋友来参加自己的生日晚会,你们猜猜他邀请了谁?
2.操作探索,感知不同图形的特征。
师:(出示小鸡、小鱼、小象的图片)小兔的.三个好朋友是谁?它们都有自己非常喜欢的图形,它们把自己最喜欢的图形穿在了身上,你们猜一猜它们最喜欢的图形分别是什么?它们有什么特点呢?
出示图形,让幼儿操作感知不同图形的外形特征并引导幼儿积极说出自己的发现,观看小视屏小结图形特征。
师:三个好朋友呀,各有各的喜好,要邀请它们来小兔家参加晚会,真是不容易。会发生什么样的事情呢?我们来听听故事吧!
故事:小鸡说,我最喜欢圆形,我只会走圆形砖块铺的路;小鱼说,最喜欢三角形,我要走三角形砖块铺的路;小象说,最喜欢方方的正方形,只有走在正方形砖块的路上,我才不会摔跤。这下小兔可头疼了,三个都是自己的好朋友,小兔希望它们都能来,可是,来自己家的只有一条普通的路呀,怎么办呢?小兔思考了很久,终于想到了一个好办法,那就是分别给三个好朋友铺条路吧!
3.幼儿操作,根据图形特征选择相应图形为三个好朋友铺路。
师:小兔会选择什么图形给小象铺路呢?小鱼呢?小象呢?小兔自己要铺三条路,实在是有点忙不过来,宝贝们,我们来帮帮它吧!
操作:幼儿根据相应图形的特征,选择相应道路排队为三个好朋友铺路。
4.提升经验游戏,根据图片中物体的特征对应图形找朋友进行分组舞蹈。
讲述故事:终于,在伙伴们的帮助下,路很快就铺好了,三个好朋友也开开心心地出发去小兔家了,到了小兔家后,它们很快就找到了和自己喜欢的形状一样的新朋友。
师:你们猜一猜,小鸡的新朋友会是谁?为什么?小象呢?……就这样,小兔的生日晚会终于开始了,大家开心地跳起来舞。(播放ppt)
师:我给你们每个人准备了一个小礼物,有了这个礼物,你就能和小鸡、小鱼、小象一起跳舞了。
幼儿取出物体图片,观察并大胆与同伴交流自己手中的物体是什么,它是什么形状,这个形状可以和谁一起跳舞?
游戏:幼儿根据自己手中物体对应图形,根据ppt提示进行分类舞蹈游戏。
(三)结束部分:
师:今天的生日晚会真开心呀,小兔子的朋友们为它准备了各种各样的蛋糕,我们一起去吃蛋糕了吧!(带领幼儿离场)
(一)美工区:为幼儿提供三种图形材料,引导幼儿进行拼图。
(二)家庭和社会活动中:和家人一起寻找生活中的圆形、三角形和正方形物品。
活动总结活动通过出示小象、小鱼和小鸡图片,引出正方形、三角形和圆形三种图形,再出示图形,请幼儿摸一摸、折一折自己手中的图形,进一步感知图形的特征;小班幼儿认识依靠行动,在了解了三中图形的基本特征后,设计让幼儿加入帮助小兔铺路的情景,让幼儿感知自己动手去进行图形分类后,在让幼儿根据手中物品匹配图形找朋友玩游戏,不仅会让幼儿记忆深刻,还能增强了幼儿的自豪感,巧妙地将对三种图形的认识延伸到了生活中。
数学教学设计方案篇三
教材第77页例3、“做一做”和练习十七的第1~4题。
1.通过教学使学生掌握两积之和等于已知的总和和含有小括号的方程的解法,并会列方程解具有这种数量关系的应用题。
2.培养学生分析问题的能力和用多种方法解决问题的能力。
3.培养学生认真检验的良好习惯。
寻找题目中的等量关系。
教具:多媒体
1.解方程。
2x-3=5 4.5+3x=13.5
2.妈妈买了2kg苹果和3kg梨,已知梨每千克2.8元,苹果每千克2.4元,妈妈一共要付多少钱?学生读题后,独立列式计算,并说出数量关系。
苹果的总价+梨的总价=总钱数
2.4×2+2.8×3=13.2(元)
3.揭示课题:这节课我们继续学习实际问题与方程。(出示课题)
1.教学“列方程解两积之和的应用题”。
(1)出示情景图。
每千克苹果多少元?
(2)列方程并解方程。
让学生独立写出等量关系,列方程并解方程。
苹果的总价+梨的总价=总钱数
解:设苹果每千克x元。
2x+2.8×3=13.2
2x+8.4=13.2
2.教学例题3。
出示例题3。
把上面的例题改成例题3:妈妈买了苹果和梨各2kg,共付10.4元,已知梨每千克2.8元,苹果每千克多少钱?
提问:这道题与上一题有什么异同?(这道题的数量关系和上个例题一样;只是部分数字进行了改动,解题方法也和上题一样)
学生独立解答。
(1)学生审题,说出解题思路。
(2)口头列出方程:2x+2.8×2=10.4。
(3)在课本上写出解答过程。
全班交流汇报,教师引导总结解法:
(1)用未知数x表示每千克苹果的价钱。
(2)根据苹果的总价+梨的总价=总钱数列方程。2x表示苹果的总价,2.8×2表示梨的总钱数。
(3)根据解2x+2.8×2=10.4这个方程的方法,把2.8×2先算出来,把2x看作一个整体,转化成我们学过的方程的类型来解方程。
教师边讲解边板书。
解:设苹果每千克x元。
2x+2.8×2=10.4
2x+5.6=10.4
2x+5.6-5.6=10.4-5.6
2x=4.8
2x÷2=4.8÷2
x=2.4
(4)经检验,x=2.4是方程的解。
3.探究第二种解法。
提问:除了上面的方法外,还有什么方法?(学生独立思考后,试着用另一种方法列出方程,说出自己的思路)
让学生说出数量关系,并列出方程。
板书:(苹果的单价+梨的单价)×2=总钱数
解:设苹果每千克x元。
(x+2.8)×2=10.4
讨论:这个方程怎样解?自己动手试一试。
学生汇报交流。
教师引导学生总结:在解这个方程时,可以把小括号内的2.8+x看作一个整体,先求出2.8+x等于多少,再求出x等于多少。
板书:解:设苹果每千克x元。
(2.8+x)×2=10.4
(2.8+x)×2÷2=10.4÷2
2.8+x=5.2
2.8+x=5.2-2.8
x=2.4
4.比较两种解法。
提问:例3中的'两种解法列出的方程有什么联系吗?
方程1:2x+2.8×2=10.4
方程2:(2.8+x)×2=10.4
学生自由发言。
讲解:从第二个方程到第一个方程,实际是利用了乘法分配律;从第一个方程到第二个方程;实际上是应用了乘法分配律的逆运算。
1.完成教材第77页“做一做”。
这道题,数量关系为两积之和的实际问题。已知四张门票共11元。从插图中可以看出,成人票、儿童票各2张。
2.完成教材第80页练习十七的第1~3题。
提问:本节课你又学会了解哪些类型的方程?还有不明白的问题吗?
小结:这节课我学会了两积之和等于已知的总和及含有小括号的方程的解法。
教材第80页练习十七第4题。
数学教学设计方案篇四
《7的乘法口诀》:
教学内容:教科书第72页的内容
教学目标:
1、利用学生已有知识经验和类推能力,使学生自主经历口诀的编制过程,了解7的乘法口诀的来源,理解7的乘法口诀的意义。
2、掌握7的乘法口诀的特征,熟记口诀,并逐步提高灵活运用口诀的能力。
3、通过多角度的练习,体会数学就在身边,激发学生学习数学知识的兴趣。
教学过程:
一、自主探索
1、引入
教师出示用七巧板拼成的图
教师:这是同学们用七巧板拼成的图案,都拼成了什么?
教师:拼一个图案要用几块拼板?是几个7?怎样列乘法算式?你能编一句乘法口诀吗?
教师随学生回答板书如下:
1个7是71×7=77×1=7一七得七
教师:拼两个图案要用几块拼板?是几个7?对应的乘法算式或乘法口诀是什么?
教师继续完成相应板书。
教师:像这样,同学们能根据这7个图案试着编出其他的7的乘法口诀吗?
2、编制口诀
打开课本72页,尝试在书上填写。
3、全班交流
(1)汇报,并上黑板写
(2)根据学生汇报,课件出示7的乘法口诀。
(3)检查学生学习情况
说一说哪个算式可以表示拼4个图案所用的.拼板的块数?相对应的乘法口诀是哪一句?
拼6个图案需要几块拼板?所用的乘法口诀是哪一句?根据这句乘法口诀你能联想到哪个乘法算式?
“五七三十五”这句口诀表示什么意思?
“七七四十九”这句口诀为什么只能计算一道乘法式题?
二、记忆口诀
1、刚才经过我们共同的努力,大家编出了7的乘法口诀,下面请大家拍手齐读口诀,读后让学生自己记忆口诀。
教师:你认为7的乘法口诀中哪句容易记?为什么?
教师讲述动画片中的情境,让学生寻找7的乘法口诀,并运用联想记忆口诀。
教师:看,这些故事和生活中的俗语也能帮助我们联想到乘法口诀。
2、7的乘法口诀还有什么特点?
从上往下观察,口诀中的第一个数依次多1,第二个数都是7,积依次多7。
教师:为什么积依次多7?
让学生利用发现再次记忆口诀,之后再进行对口令的游戏。
三、灵活运用
1、看算式说口诀
7×3= 7×5= 7×6= 3×7+7=
7×4= 7×7= 7×2= 7×1= 7×7-7=
2、想一想,在我们的身边有哪些事物、现象和故事与7有关呢?
(1)算七星瓢虫身上的点。
(2)算诗的字数
绝句
两个黄鹂鸣翠柳,
一行白鹭上青天。
窗含西岭千秋雪,
门泊东吴万里船。
这首诗是本周经典诵读古诗,你们会背吗?学生齐背。
这里有7吗?你们知道诗中一共有多少个字吗?怎么想的?
教师:每句7个字,所以又叫“七言诗”。
教师:加上题目一共有几个字?怎样列式?
(3)编一编
1个矮人1顶帽,7个矮人7顶帽;
1个矮人2件衣,7个矮人()件衣;
1个矮人3条裤,7个矮人()条裤;
1个矮人()双鞋,7个矮人()双鞋
数学教学设计方案篇五
1、认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位
2、渗透对应关系,提高学生的数感.
一.利用已有知识,引入
1.如图,怎样说明数轴上点a和点b的位置,
2.根 据下图,你能正确说出各个象棋子的位置吗?
二.明确概念
平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的.数轴为y轴或纵轴,正方向;两个坐标轴的交点为 平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方 法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对 应的数值。
例1写 出图中a、b、c、d点的坐标。
建立平面直角坐标系后,平面被坐标轴分成四部分,
分别叫第一象限,第二象限,第三象限和第四象限。
你能说出例 1中各点在第几象限吗?
例2在平面直角坐标系中描出下列各点。
a(3,4);b(-1,2);c(-3 ,-2);d(2,-2)
问题1:各象限点的坐标有什么特征?练习:教 材43页:练习1,2。
三.深入探索
识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。
四、巩固练习:教材44页习题6.1——第1题;教材45页—— 第2,4,5,6。
五、课堂小结
1.平面直角坐标系;2.点 的坐标及其表示;3.各象限内点的坐标的特征;4.坐标的简单应用
六、作业布置:课本p45第3题
数学教学设计方案篇六
《纲要》中明确指出:数学教育的目标是“能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣。学习用简单的数学方法解决生活和游戏中某些简单问题。”在学习了6以内加法的经验基础上,我由幼儿熟悉的生活场景 “超市”入手,引导幼儿在活动中提出问题,解决问题,在应用中巩固,在活动中深化,从而进一步体会加法的意义、应用加法解决问题。整个活动让数学回归了幼儿的生活情境,从过去的数学知识情境走向生活实践,给了幼儿将数学思维方法极为宽广的迁移应用的机会,能更有效的提高幼儿思维的`灵活性、准确性,创造性的解决自己的问题,也就更能突现数学作为思维的体操的功能。
1、激发幼儿学习数学的兴趣;
2、在实际情境中感受数学与生活的联系,并能运用所学的加法解决简单的实际问题;
3、培养幼儿的观察、分析能力,发展幼儿的口语表达能力
4、进一步体会理解加法的意义,正确计算6以内的加法,复习加法交换律。
进一步体会理解加法的意义,在实际情境中感受数学与生活的联系,并能运用所学的加法解决简单的实际问题。
幼儿学具:数字卡片1——6、+、=,6元纸币
教具:数字卡片若干、算式卡片若干、价格标签若干、音乐
环境创设:超市一角:饮品专柜
1、出示各种饮品,请幼儿看一看、说一说有什么;
2、引导幼儿分类放置饮品,并请幼儿介绍分类的方法;
1、引导幼儿提出问题;
2、引导幼儿分析解决问题;
(1)按颜色不同列算式
a发现营养快线的不同(颜色不同)
b点数记录橙色、蓝色的数量
c引导幼儿列加法算式,并说说列示的原因;
4+2=6
2+4=6
(2)按大小不同列加法算式
1+5=6
5+1=6
(3)按名称不同列加法算式
3+3=6
(4)观察第一组、第二组算式,引导幼儿复习加法交换律
a发现两组算式的相同及不同之处;
b用手势表示
引导结合生活经验,口述加法应用题,发展幼儿的想象力及口语表达能力;
1、出示物品价格,了解各种物品的价格;
2、说一说6元钱可以买什么,发散幼儿思维:可以2种物品,可以3种,可以更多(突破2步加法的模式,熟练运用加法,举一反三)
3、分配游戏角色,讲解游戏规则:
所购饮品价格总和必须为6元,多于或少于6元的必须及时调整货物,否则不予结账。(渗透排队交费的社会教育)
4、师幼共同游戏,个别指导
活动延伸
区域活动:小超市
数学教学设计方案篇七
1、通过自主探索发现乘除法之间的联系,学会用乘法口诀求商。
2、培养学生收集并处理信息,进而利用相关的信息解决问题的能力。
3、通过“用乘法口诀求商”这一发现,领略数学简捷的思维方法和广泛的应用价值。
重点:建立“用乘法口诀求商”的数学模型。
难点:拓展对“除法意义”的理解、认识和运用的空间;对纷繁复杂的信息进行恰当的选择与判断。
1、实物投影图片或持图:(1)“小熊开店”主题图;(2)“练一练”中的第1、2、3题。
2、与教学进程同步的配套录音故事。
本节课是在完成了“除法的初步认识”的基础上,设计的“用2-5的乘法口诀求商”的起始课。该教学设计以“小熊商店”里的几们顾客的问题为主要线索,通过以下活动实现教学目标。
1、创设“小熊开店”的问题情境,提出本节课的“桥梁”问题“买4辆坦克需要多少元”和核心问题“20元可以买多少辆坦克”。
2、自主探究,发现乘除法之间的联系,建立“用乘法口诀求商”的教学模型。
3、运用所建模型,解决相关的问题,并通过综合练习,体验数学的简捷思维的优势和广泛应用价值。
一、创设情境,提出问题。
师:小熊今天起个大早,原来今天是它的店第一天开张.我们来看看小熊的店里有些什么?
1、出示“小熊开店”主题图,引导学生观察。
2、学生从以下几方面交流信息:
(1)小熊商店的货架上有哪些商品?每种商品的价格是多少?
(2)来了哪几位顾客?
3、播放录音故事,提出重点问题。
(1)“星期天上午,小熊刚打开店门,就来了三位顾客,小熊热情地招呼它们:‘欢迎小猴、小猫和小狗光临我的商店。你们想买点什么呢?’小猫说:我想买4辆坦克,需要多少元钱呢?”
(2)此时学生很容易答出:5×4=20(元)或4×5=20(元),并解释这样列式和计算的理由:每辆坦克5元,买4辆要用4个5元,所以用乘法计算;再想乘法口诀“四五二十”,很快能算出是20元。
(3)大家形成一致性意见后,接着播放故事。
“小狗说:‘我也喜欢坦克,用20元钱能买几辆呢?’”
二、自主探究,建立模型。
1、学生围绕“20元可以买几辆坦克”这一关键性问题开展活动。
(1)独立思考。
(2)小组内合作交流。
(3)集体汇报。
生:因为1辆坦克5元,所以可以5元5元地数一数:1辆5元,2辆10元,3辆15元,4辆20元。20元可以买空卖4辆。
想一想20元里面有向个5,就能买几辆。用除法计算:20÷5=4(辆)。
生:把20元每5元分1份,分成了几份就能买几辆。用除法计算:20÷5=4(辆)。
生:我们是用乘法口诀,四五二十,所以20÷5=4
2、深入研讨。
怎样才能很快算出“20÷5=4”等于几呢?
学生回答后播放故事内容。
“机灵的小猴说:‘想乘法口诀“四五二十”,4个5是20,20里面有4个5,所以20÷5=4,能买4辆。’”
从以上小猫和小狗买坦克的问题中,你发现了什么?
学生讨论后,从“乘除法的联系”和:“用乘法口诀求商”两方面汇报。
充分交流后播放智慧老人的`话:“我们可以用乘法口诀很快求出4×5或5×4的积,也可以用同样的乘法口诀很快算出20÷5的商,因为乘除法的联系是十分密切的。用乘法口诀求商又快又准,真方便。”
三、运用模型,解决问题
1、小猴的问题。
(1)继续播放故事。
“小猴又说:‘你们的问题都解决了,再来帮我算一算吧。我有12元钱,如果买铅笔盒可以买几个?如果买皮球可以买几个?’”
(2)学生经过思考,然后完成“想一想”中的第(1)、(2)题。
(3)解释与订正。
第(1)题:求12元可以买几个铅笔盒,就是求12元里面有几个4元,用除法算。12÷4=3(个),用口诀是“三四十二”。
第(2)题:求12元可以买几个皮球,就是把12元每3元分成1份,分成几份就能买几个,用除法算。12÷3=4(个)
2、老师的问题。
买什么东西正好用完24元?
(1)学生把自己的想法说给同桌听。
(2)集体交流。
买4个布娃娃。24÷6=4(个);口诀:四六二十四。
买8个皮球。24÷3=8(个);口诀:三八二十四。
买6个铅笔盒。24÷4=6(个);口诀:四六二十四。
买3个筝。24÷8=3(个);口诀:三八二十四。
3、大家的问题。
互动活动:在小组内相互提问、解答、并说明所用的口诀。例如:
(1)18元能买几个布娃娃?
(2)20元可以买几个铅笔盒?
(3)买几个风筝正好用完32元?
四、脱离“小熊开店”的情境,进行综合练习。
1、“试一试”。
要求学生试着完成该题中的除法试题,提醒大家边想口诀边计算。
(1)学生试算。
(2)交流答案并说说所用的口诀。
2、“练一练”。
(1)小鸟回家。
出示该题图片,学生读懂题意:小鸟家的房顶上有乘法口诀,小鸟口中的卡片上有算式;算式与口诀对应连线,帮小鸟回家。
学生独立完成。
集体交流订正。
(2)蚂蚁搬家。
出示该题图片,学生读懂题意。
情境:蚂蚁 要搬新家,需要用小车拉米。
条件:有27粒米,每只蚂蚁只能拉3粒。
问题:几保蚂蚁才能一次搬完?
思路引导。
把27粒米,每3粒分1份,看分成了几份,就需要几只蚂蚁。
看27里面有几个3。
学生独立完成。
交流与订正。
(3)动物赛跑。
出示该题图片,读懂题意。
马、鹿、羊赛跑,小老鼠当目线员。
要算完5道除法式题才能闯线,谁算得又对又快,谁就是冠军。
学生分成3人小组进行活动,自主选择所扮角色。
交流与订正,为冠军鼓掌祝贺。
如果时间许可,交换所扮角色,继续比赛。
五、课堂总结。
学生自己总结这节课的知识、技能、情感等方面的收获和体验。
六、布置作业。
数学教学设计方案篇八
教科书第82、83页。
本节活动课涉及的内容大多是一些抽象的概念,如10以内数的基数、序数含义,数的组成、比较大小;10以内数的加减法;简单的统计思想等等。尽管教材中将上述内容安排在一个一个具体的游戏中,但由于篇幅的限制,许多创意不可能都写进教材。杨老师根据本节活动的内容和一年级学生的认知心理特征,采用了儿童喜闻乐见的方式来开展各项实践活动,获得了较大的成功。如做走迷宫游戏时,教师创设了给“数字娃娃”排队的游戏,设计了帮小白兔找家的童话情境;又如,做“对口令”游戏时,设计了师生之间、学生之间的不同活动层面,使每个学生都能参与到活动中来,极大地调动了学生参与的积极性。
面向全体,让每一个学生获得成功的体验。整节活动课,我注意公平地面向每个学生,提问、交流、奖“数字星”等活动,都尽可能让多一些学生有机会参与,使多数学生获得成功的体验。
培养学生综合运用数学知识解决简单实际问题的能力。同时,通过活动培养学生的合作交流意识,使学生养成良好的学习习惯。
进行每项活动的用具。
课件展示,“数学乐园”全景图。
谈话:同学们,你们喜欢做游戏吗?今天老师想和你们一块儿去“数学乐园”做游戏,你们想不想参加?(师板书课题:数学乐园)
导入:在“数学乐园”里还有很多“数字之星”,待会儿谁最爱动脑筋,发言最积极,老师就奖给他一颗“数字之星”。
[设计意图:上课伊始,创设带领学生去“数学乐园”游玩的情境,一下就把学生的注意力吸引过来,同时以奖励学生“数字之星”这种外显的评价、激励手段激发学生参与实践活动的动力。]
活动(一):走迷宫游戏
1、复习0~10各数的认识。
(1)学生说出0~10,师贴出相应的数字卡片,每张卡片上有一个娃娃头。
(2)谁能用上面一个或几个“数字娃娃” 说一句话呢?石老师先说一句, “动物园里有1只熊猫,3只小山羊,5只猴子,它们都可爱极了。”
(3)学生说
(4)会用“数字娃娃”说话了,除了在课本上,还在哪儿看到过他们?
[设计意图:在教师的引导下,让学生根据自己的生活经验用10以内各数说一句话,也就是用它们来表示一些物体的数量。这一方面复习了10以内各数的基数含义和序数含义,另一方面使学生感受生活中处处有数学,数学就在身边。]
(5)邀请“数字娃娃”和我们一块儿做游戏。
刚才,“数字娃娃”悄悄告诉我,说他们站的队全乱了,谁能按一定的顺序给他们排排队?其他同学也可以拿出数字卡片排一排。
学生摆卡片:(一生上台摆卡片,并说出是按什么顺序排列的。其他同学分别在自己桌面上摆数字卡片。)
[设计意图:排队是校园中常见的活动。利用它的直观有序性引导学生对0~10各数进行排队,使学生能用抽象的语言来描述这11个数之间的大小关系。]
2、从故事引入“走迷宫”活动。
(出示小黑板)讲“小白兔迷路”的故事,一天,小白兔出去玩,走着走着,突然迷路了。这可怎么办呀?于是,他给妈妈打电话:“妈妈,妈妈,我迷路了,这怎么办呀?”妈妈听了,点了点头说:“孩子,你长大了,自己的事情应自己做,只要你按1、2、3、4……的顺序走到9,就一定能回到家。”于是聪明的小白兔按妈妈的话去做,终于回到了家。同学们,你们知道小白兔是怎样走的吗?(学生上台演示)
[设计意图:以帮助小动物找家的童话故事引入“走迷宫”活动,一方面培养学生助人为乐的品格,另一方面促使学生全身心地投入到活动中来。]
3、学生独立“走迷宫”──帮助小兔找家。
(让四生分别在四块黑板上用不同颜色的粉笔画出不同路线,其他同学在课本上画出小兔回家的路线。)
4、比比谁想得多,进行评价奖励。
[设计意图:学生“走迷宫”开始的思路是无序的。怎样培养学生有条理的进行思考的能力呢?这就应在教学中以活动内容为载体,教给学生思考的一般方法。教师引导学生利用图表,使学生看出“1”到“2”有2条路,“2”到“3”有6条路……孕伏排列的一些基本方法,使学生的认识水平经过“跳一跳”而跃上一个新台阶。]
活动(二):对口令游戏
1、复习数的组成(出示8),老师出一个数,你们出一个数,使这两个数组成8。
2、同样的形式师生互对组成10,之后同学互对组成9。
[对口令游戏方便、快捷、效率高。用这种方式使师生之间、生生之间“同台唱戏”,改变以往沉闷的课堂教学方式,使师生之间显得更加和谐、融洽。]
活动(三):送信游戏
请按四人小组的位置坐好,再从抽屉里拿出一个信封,信封反面有一个数字,请你们把桌面上得数与你信封上数字相同的算术卡片放进信封。
[设计意图:将枯燥的10以内加减计算变成有趣的送信活动,使学生在游戏中用自己熟悉的方法完成简单的口算,同时有与同伴合作解决问题的体验。]
活动(四):起立游戏
做“数数排第几”的游戏。
1、游戏之前,请两竖行同学从前往后,从后往前报数。其他同学也数数自己从前数排第几,从后数排第几。
2、师点到从前数第3位同学,从后数第4位同学,该竖行该生就起立拍下手。之后让学生练习从左数,从右数,并注意让其区分几个和第几个。)
[设计意图:起立游戏让学生感到既紧张又轻松,通过数数和思考,每位同学对在班上的'位置都有一个正确的定位:从前(后)数,自己是第几个;从左(右)数,自己是第几个。通过这个游戏,使学生进一步感知了前、后、左、右等空间方向,又区分了几个和第几个这两个易混的概念。]
活动(五):投掷游戏
“看谁投得多”的游戏:点学生按规则向篮里投球,共10个球,看能投进几个。同时请一位同学当评判员,用图片表示投进球的数量并贴在黑板上,之后请其他同学当“小记者”,报导几位同学的投球成绩并进行比较。其间还让同学们说说有几个球没投进,并说出自己的算法。
[设计意图:投掷游戏在全体学生中进行,尽管投掷者寥寥无几,但活动让全体学生感到新鲜,每个人都是评判员。就在这看似纯游戏的活动中,学生通过数投进(或未投进)球的个数,并将这些数目用小圆片贴出来进行比较等活动,使学生感知事件发生的可能性和不确定性,初步了解直观比较两个数多少的方法。]
今天,大家在“数学乐园”里玩的开不开心?在我们玩的游戏中运用了前面所学的10以内数的认识和加减法的知识。其实只要我们留心就会发现生活中很多的数学知识,以后我们学会更多的知识,老师再带大家到“数学乐园”里来玩。
教学反思:教师始终以饱满的激情投身于课堂教学中,创设一个让学生感到愉悦、激奋的教学活动环境,教师不仅用理智上课,还极大地倾注了自己的喜欢和兴趣。
数学教学设计方案篇九
刚才老师教大家折纸的时候,用到了一个词,谁知道?
生1:1分钟。
师:这节课我们就来感受1分钟,1分钟有多少,能干什么。
师:谁知道有关1分钟的哪些知识?
生1:16秒
生2:60秒
师:谁能告诉我哪个是分针?
师:分针走1格是1分种,那分针走1格,秒针走多远呢?
生3:60格。
师:那1分钟到底有多长啊?感受下。(课件演示)
生1:我觉得有点长。
生2:我也觉得很长。
生3:我觉得很短。
生4:很快。
师:有的觉得长,有的'觉得短,……
测一测1分钟内自己的脉搏。
生1:60(板书)
生2:97(板书)
生3:88(板书)
生4:12
师:老师帮你测一测。只测10秒就能推出。78下。(学生:啊?)
生5:96下。(板书)
生6:70下。(板书)
师:根据这些数字,你能估计其他同学的心跳大约在多少下吗?
生1:90
生2:60
生3:80
小结:每个的…………不一样,所以心跳也不一样。
师:老师带来了一组活动,活动内容:
计算 拍球 数小棒 读字 画画
要求:每小组选择一项内容进行活动。并记录下相应的次数。
生1:我拍了122
生2:我拍了50个
生3:我小棒数了50个
生4:我小棒数了30个。
生5:我1分钟读66个字
将活动记录下来:(课件出示表格,当场填入数字)
拍球
活动内容
组员代号
结果
从上表中你发现了什么?
……
师:我能看出,1号1分钟拍90个,我能推算出2分钟拍几个。
提问:4号2分钟大约能拍几个?
做实验:1分钟你能写多少个字?
先估计:
生1:50个
生2:30个
生3:90个。
验证到底写几个(课件出示要写的字)
学生开始写。
汇报:
生1:我猜想的是10个字,我写的就是10个字。
生2:我猜的是30个字,只写了13个字。
师:刚才猜90个字的同学呢?
生3:我也只写了十几个字。
通过刚才的体验,你有什么感想?
生1:只会说是没有用的,得做出来。
师:你能猜测2分钟写多少个字吗?
师:一节课很快就过去了,你有什么收获吗?
数学教学设计方案篇十
1、能熟练地口算5以内的加减法。
2、培养学生根据情境提出问题,解决问题的.能力。
3、通过实践操作演示,初步学会整理的方法。
能熟练地口算5以内的加减法。
找规律填数。
小棒或小圆片、算式卡片
1课时
一、练习5以内的加减法
1、第一题:先观察情境图,提出教学问题;再列式计算。
2、第二题:学生独立完成。
3、第五题:“找家”,先算一算,再连一连。
4、第六题:先让学生独立尝试练习,讨论交流“□+□=5”和“□-□=1”这两个算式,鼓励学生尽可能地想出不同的答案。
5、第七题:先让学生猜一猜每个盒里会有哪些卡片,再把卡片打乱次序分组整理,指导找到较好的整理方法。
二、找规律填数
1、第3题:先拿出学具进行演示,再让学生独立填空,最后引导学生发现其中的规律,说说每次多几个或每次少几个。
2、第4题:
(1)引导学生观察第1小题。
(2)组织生分组交流。
(3)反馈讨论结果。
其它两个小题教法同第1小题
数学教学设计方案篇十一
1、知识结构
2、重点、难点分析
重点:找出命题的题设和结论.因为找出一个命题的题设和结论,是对该命题深刻理解的前提,而对命题理解能力是我们今后研究数学必备的能力,也是研究其它学科能力的基础.
难点:找出一个命题的题设和结论.因为理解和掌握一个命题,一定要分清它的题设和结论,所以找出一个命题的题设和结论是十分重要的问题.但有些命题的题设和结论不明显.例如,“对顶角相等”,“等角的余角相等”等.一些没有写成“如果……那么……”形式的命题,学生往往搞不清哪是题设,哪是结论,又没有一个通用的方法可以套用,所以分清题设和结论是教学的一个难点.
(二)教学建议
1、教师在教学过程中,组织或引导学生从具体到抽象,结合学生熟悉的事例,来理解命题的概念、找出一个命题的题设和结论,并能判断一些简单命题的真假.
2、命题是数学中一个非常重要的概念,虽然高中阶段我们还要学习,但对于程度好的a层学生还要理解:
(1)假命题可分为两类情况:
①题设只有一种情形,并且结论是错误的,例如,“1+3=7”就是一个错误的命题.
②题设有多种情形,其中至少有一种情形的结论是错误的.例如,“内错角互补,两直线平行”这个命题的题设可分为两种情形:第一种情形是两个内错角都等于90°,这时两直线平行;第二种情形是两个内错角不都等于90°,这时两直线不平行.整体说来,这是错误的`命题.
(2)是否是命题:
命题的定义包括两层涵义:①命题必须是一个完整的句子;②这个句子必须对某件事情做出肯定或者否定的判断.即命题是判断某一件事情的句子.在语法上,这样的句子叫做陈述句,它由“题设+结论”构成.
另外也有一些句子不是陈述句,例如,祈使句(也叫做命令句)“过直线ab外一点作该直线的平行线.”疑问句“∠a是否等于∠b?”感叹句“竟然得到5>9的结果!”以上三个句子都不是命题.
(3)命题的组成
每个命题都是由题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.命题常写成“如果…,那么…”的形式.具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论.
有些命题,没有写成“如果…,那么…”的形式,题设和结论不明显.对于这样的命题,要经过分折才能找出题设和结论,也可以将它们改写成“如果…那么…”的形式.
另外命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述.
1.使学生对命题、真命题、假命题等概念有所理解.
2.使学生理解几何命题的组成,能够区分命题的题设和结论两部分,并能将命题改写成“如果……,那么……”的形式.
3.会判断一些命题的真假.
本节的重点和难点是:找出一个命题的题设和结论.
1.教师让学生随意说一句完整的话,每个小组可以派一名同学说,如:
(1)我是中国人。
(2)我家住在北京。
(3)你吃饭了吗?
(4)两条直线平行,内错角相等。
(5)画一个45°的角。
(6)平角与周角一定不相等。
2.找出哪些是判断某一件事情的句子?
学生答:(1),(2),(4),(6)。
3.教师给出命题的概念,并举例。
命题:判断一件事情中,每句话都判断什么事情.所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.在数学课中,只研究数学命题,请学生举几个数学命题的例子,每组再选一个同学说.(不要让说过的再说)
如:的句子,叫做命题,分析(3),(5)为什么不是命题.
教师分析以上命题
(1)对顶角相等。
(2)等角的余角相等。
(3)一条射线把一个角分成两个相等的角,这条射线一定是这个角的平分线。
(4)如果a>0,b>0,那么a+b>0。
(5)当a>0时,|a|=a。
(6)小于直角的角一定是锐角。
在学生举例的基础上,教师有意说出以下两个例子,并问这是不是命题。
(7)a>0,b>0,a+b=0。
(8)2与3的和是4。
有些学生可能给与否定,这时教师再与学生共同回忆命题的定义,加以肯定,先不要给出假命题的概念,而是从“判断”的角度来加深对命题这一概念的理解。
4.分析命题的构成,改写命题的形式。
例两条直线平行,同位角相等.
(l)分析此命题的构成,前一部分是后一部分成立的条件,后一部分是在前一部分条件下所得的结论.已知事项为“题设”,由已知推出的事项为“结论”。
(2)改写命题的形式。
由于题设是条件,可以写成“如果……”的形式,结论写成“那么……”的形式,所以上述命题可以改写成“如果两条平行线被第三条直线所截,那么同位角相等。”
请同学们将下列命题写成“如果……,那么……”的形式,例:
①对顶角相等。
如果两个角是对顶角,那么它们相等。
②两条直线平行,内错角相等。
如果两条直线平行,那么内错角相等。
③等角的补角相等。
如果两个角是等角,那么它们的补角相等。(注意不仅仅限于两个角,如果多个角相等,它们的补角也相等。)
以上三个命题的改写由学生进行,对(2)要更改为“如果两条平行线被第三条直线所截,那么内错角相等。”
提示学生注意:题设的条件要全面、准确.如果条件不止一个时,要一一列出。
如:两条直线相交,有一个角是直角,则这两条直线互相垂直,可改写为:
“如果两条直线相交,而且有一个角是直角,那么这两条直线互相垂直。”
1.让学生分析两个命题的不同之处。
(l)若a>0,b>0,则a+b>0
(2)若a>0,b>0,则a+b<0
相同之处:都是命题.为什么?都是对a>0,b>0时,a+b的和的正负,做出判断,都有题设和结论。
不同之处:(1)中的结论是正确的,(2)中的结论是错误的。
教师及时指出:同学们发现了命题的两种情况。结论是正确的或结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题。
2.给出真、假命题定义
真命题:如果题设成立,那么结论一定成立,这样的命题,叫做真命题。
假命题:如果题设成立,结论不成立,这样的命题都是错误的命题,叫做假命题。
注意:
(1)真命题中的“一定成立”不能有一个例外,如命题:“a≥0,b>0,则ab>0”。显然当a=0时,ab>0不成立,所以该题是假命题,不是真命题。
(2)假命题中“结论不成立”是指“不能保证结论总是正确”,如:“a的倒数一定是”,显然当a=0时命题不正确,所以也是假命题。
(3)注意命题与假命题的区别.如:“延长直线ab”.这本身不是命题.也更不是假命题。
(4)命题是一个判断,判断的结果就有对错之分.因此就要引入真假命题,强调真假命题的大前提,首先是命题。
3.运用概念,判断真假命题。
例请判断以下命题的真假。
(1)若ab>0,则a>0,b>0。
(2)两条直线相交,只有一个交点。
(3)如果n是整数,那么2n是偶数。
(4)如果两个角不是对顶角,那么它们不相等。
(5)直角是平角的一半。
解:(l)(4)都是假命题,(2)(3)(5)是真命题.
4.介绍一个不辨真伪的命题.
“每一个大于4的偶数都可以表示成两个质数之和”。(即著名的哥德巴赫猜想)
我们可以举出很多数字,说明这个结论是正确的,而且至今没有人举出一个反例,但也没有一个人能证明它对一切大于4的偶数正确.我国著名的数学家陈景润,已证明了“每一个大于4的偶数都可以表示成一个质数与两个质数之积的和”.即已经证明了“1+2”,离“1+1”只差“一步之遥”.所以这个命题的真假还不能做最好的判定。
5.怎样辨别一个命题的真假。
(l)实际生活问题,实践是检验真理的唯一标准。
(2)数学中判定一个命题是真命题,要经过证明。
(3)要判断一个命题是假命题,只需举一个反例即可。
师生共同回忆本节的学习内容。
1.什么叫命题?真命题?假命题?
2.命题是由哪两部分构成的?
3.怎样将命题写成“如果……,那么……”的形式。
4.初步会判断真假命题.
教师提示应注意的问题:
1.命题与真、假命题的关系。
2.抓住命题的两部分构成,判断一些语句是否为命题。
3.命题中的题设条件,有两个或两个以上,写“如果”时应写全面。
4.判断假命题,只需举一个反例,而判断真命题,数学问题要经过证明。
1.选用课本习题。
2.以下供参选用。
(1)指出下列语句中的命题.
①我爱祖国。
②直线没有端点。
③作∠aob的平分线oe。
④两条直线平行,一定没有交点。
⑤能被5整除的数,末位一定是0。
⑥奇数不能被2整除。
⑦学习几何不难。
(2)找出下列各句中的真命题。
①若a=b,则a2=b2。
②连结a,b两点,得到线段ab。
③不是正数,就不会大于零。
④90°的角一定是直角。
⑤凡是相等的角都是直角。
(3)将下列命题写成“如果……,那么……”的形式。
①两条直线平行,同旁内角互补。
②若a2=b2,则a=b。
③同号两数相加,符号不变。
④偶数都能被2整除。
⑤两个单项式的和是多项式。
数学教学设计方案篇十二
《数学广角》第一课时的内容.排列与组合知识不仅是学习概率统计知识的基础,而且也是日常生活中应用比较广泛的数学知识,同时也是发展学生抽象思维能力和逻辑思维能力的好素材。《新课程标准》中指出“重要的数学概念与数学思想宜逐步深入。”教材注重体现这一要求,在二年级上册教材中,学生已经接触了一点排列与组合知识,在三年级上册继续学习排列与组合这一内容,就是在学生已有知识和经验的基础上,继续让学生进一步系统、深入的学习排列组合的数学思想及更为复杂的排列组合问题。初步培养学生有顺序、全面的思考问题的意识。
三年级的学生在生活中会遇到许多有关排列组合的问题,并能够进行较简单的搭配,但是缺乏有序的思考,无法进行“不重不漏”的搭配。根据教材特点和学生实际,我认识到,纯粹的排列与组合知识,是高度抽象与概括的知识,对于三年级的小学生来说,较难理解排列与组合的实质,因此,在教学中必须从具体形象逐步过度到抽象概括,让学生有一个由浅入深的学习过程。
1、知识目标:通过观察、猜测、实验、简单的计算活动,找出简单事物的排列数与组合数。
2、2、能力目标:培养学生初步的观察、分析及推理能力,以及有序发、全面地思考问题的`意识。
3、情感目标:使学生在数学活动中养成与人合作的良好习惯,并初步学会表达解决问题的大致过程和结果。
让学生结合具体情境,能够进行有序的思考,掌握搭配组合的方法成为本节课的教学重点。
使学生能有序的思考问题,做到既不重复也不遗漏就成为了本节课要突破的教学难点。
数学教学设计方案篇十三
1、用不等式表示:
⑴ a是正数_____________ ⑵ b不 是负数_________________;
(3) y与4的和不小于3____________________________.
(4) x的2倍与y的3倍的差是非负数_______________________;
⑷a的'一半与4的差的绝对值不小于a_________________________.
(5) 的2倍加上3的和大于-2且小于4_________________ _____;
2、选择题:
(1)下列不等式一定成立的是( )
a.2x<6 b.-x<0 1="">0 d.x2>0
(2)下列说法中不正确的是( )
a.x=4是方程x-3=1的解 b.方程x+3=1的解是x=-2
c.x=5是不等式x+3>7的解 d.不等式x+3>4的解集是x=1
(3)下列不等式恒成立的是( )
a.4a>2a b.a>0 c. d.a 2
班级 50名学生上体育课,老师出了一个题目:现在我拿来一些篮球,如果每5人一组玩 一个篮球,有些同学没有球玩;如果每6人一组玩一个篮球,,就会有一组玩篮 球的人数不足6个。你知道有几个篮球吗?
甲同学说:如果有x个篮球,5x<50;
乙同学说:6x>60;
丙同学说:6(x-1)<50.
你明白他们的意思吗?