《加法运算律》教学反思与评价(三篇)
人的记忆力会随着岁月的流逝而衰退,写作可以弥补记忆的不足,将曾经的人生经历和感悟记录下来,也便于保存一份美好的回忆。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。
《加法运算律》教学反思与评价篇一
课前的语言游戏,通过“调侃”的语气,营造轻松愉悦的气氛,同时,游戏方式中渗透着加法交换律的外形特点。接着以学生近期所关注的焦点——校运会为切入点,选择几个学生喜闻乐见的活动场景,激发学生的学习热情,为学生的.自主探究创设良好的氛围。
数学学习的过程是一个发现问题、提出关于解决问题的猜测、尝试解决、验证与修正、形成算法、推广应用的过程。在探索知识形成的过程中,以学生为主体,激励学生动眼、动手、动口、动脑积极探究问题,促使学生积极主动地参与“列式猜想——观察发现——举例验证——概括规律”这一数学学习全过程。首先在学生初步认识了28+17=17+28这样的等式以后,引发学生的猜想:是不是其他的两个数相加也有这样的规律呢?让学生写一两个例子并验证,此时再问“像这样的等式你还能写多少个?”学生说“无数个”,唤醒了学生已有的知识经验,使学生初步感知加法运算律。通过四人小组合作探究:说说在写的过程中发现了什么规律?想办法把这个规律表示出来,让学生轻松体会到“两个加数交换位置和不变”这样的规律,学生尝试运用符号、图形、文字和字母等表示规律后,教师再引出简洁的表示方法“a+b=b+a”指出这就是加法交换律,从而发展学生的符号感。在探索加法结合律的过程中,通过引导学生用迁移类推的方法探究加法结合律。在学生动手举例验证后,通过四人小组合作讨论“观察这些等式,你发现了什么规律?”为学生提供自主探索的时间和空间,让学生经历运算律的发现和探索过程,获得成功的体验,增强学生学习数学的信心。
加法结合律是本课教学难点,由于在探索加法交换律时,学生经历了探究学习的全过程,在此基础上,及时对探究加法交换律的方法做了小结,然后引导学生运用同样的研究方法开展研究加法结合律,利用课件出示探究方法的步骤,通过四人小组合作学习,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。为学生提供足够的自主探索的时间和空间,学生将已有学习方法,迁移类推到探索加法结合律的学习中来,很容易感受到三个数相加蕴含的运算规律。学生不但理解了加法运算律的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
在教学完加法交换律时,我及时把新学的知识和加法计算的验算结合起来,让学生回忆交换加数验算的方法,明确与加法交换律之间的联系。这样引导学生把新旧知识及时沟通,加深了对已有知识经验的认识,同时加深了对新知的理解。
同时,在教学过程中,我也认识到了一些不足之处:
学生初次用自己的语言描述加法交换律和结合律比较困难,出现表达不够严谨或不会表达的现象,这时我没有及时补救这种生成问题,引导的不够巧妙,也正是因为这样,耗时比较多,以至后面的练习没能够完成,使得课堂不够自然流畅。
《加法运算律》教学反思与评价篇二
加法的交换律和结合律1、教材p56~58例题和想想做做。
1、通过观察、比较和分析,归纳出加法交换律和结合律。
2、在学习过程中,理解并掌握加法交换律和结合律,并会进行运算。
3、培养学生分析、判断、推理能力,提高学生解决问题的能力。
理解加法交换律、结合律,并能正确运用。
通过观察和分析概括出加法交换律和结合律,并会用字母表示。
课件。
1、开门见山:今天我们一起来学习“运算律”。
2、看:(运算)我们学过哪些运算?
“律”指什么?那今天我们要研究什么?
3、想想,今天会研究哪一种运算的规律?为什么先研究加法?(一年级先认识加法)从几步计算研究?(一步)
4、好,我们就从简单的入手,先研究简单的,再研究复杂的,好吗?
(一)、研究加法交换律。
1、出示书本情境图引入。
仔细看图,你能提一个最简单的用加法计算的一步问题吗?
预设:跳绳的有多少人?
女生有多少人?
2、解决问题,初步感知。
怎样列式?
28+17=45(人)17+28=45(人)
17+23=40(人)23+17=40(人)
观察第一组两个算式,你发现什么?引导板书:28+17=17+28
那第二组两个算式呢?板书:17+23=23+17
3、引发猜想,举例验证。
问:是不是所有的两个数相加,交换加数的位置,和都不变呢?
既然是猜想就需要验证,怎样来验证?(板书:猜想验证)
请同学们在练习纸上举例验证猜想。学生写等式。然后交流算式,初步感知规律。
4、观察等式,发现规律。
问:观察这些等式,说说它们有什么共同特点?
小结:两个加数相加,交换加数的位置,它们的和不变。
5、引导学生探索加法交换律的表达方式。
①教师提出:能不能用一个等式来表示我们发现的规律?同桌讨论。
汇报:
预设1:我们用数字(文字)表示
2:我们用符号表示
3:我们用字母表示
②比较表示的不同方式,提出用字母表示发现的规律比较简洁。
出示板书:a+b=b+a
指出:这样的规律就是加法交换律。(板书)
想一想,以前学习中什么地方用过它?
引入:简单的研究过了,下面我们要研究稍微复杂一点的,这幅图,你还能提什么问题呢?
(二)研究加法结合律。
1、再次出现主题图。
研究:参加活动的一共有多少人?
学生列式后,板书等式:(28+17)+23=28+(17+23)
观察比较上面算式,思考:等式左右两边什么变了?什么没变?
2、丰富表象,初构规律。
完成书上的两组算式,再次比较等式左右两边的“变”与“不变。
问:你发现了什么?
3、举例验证,确认规律。
学生小组合作,进一步举例验证规律。
三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再同第一个数相加,它们的和不变。
得出加法结合律,尝试用字母表示:板书(a+b)+c=a+(b+c)
(三)比较两种运算律的异同。
说说两种运算律不同点是什么?相同点是什么?
1、完成第2题,重点让学生说说后面两题两个数结合了有什么好处。
2、完成“想想做做”第1题。重点讲第4个是交换和结合律一起使用。
3、比一比,谁算得快。完成第三题。
4、拓展560+(140+70)=(□+□)+□
(64+□)+27=64+(□+27)
71+68+□
你认为□里填什么数会使你的计算简便?怎样简便计算?
5、游戏:找朋友。
(1)哪两个同学手上的树叶的和是100?
(2)同桌一个同学说出一个数,另一个同学马上说出一个与它的和是整百、整千的数。
今天这节课我们学习了什么知识?你是怎样获得这些知识的?那么在减法、乘法、除法中,有没有这样的规律呢?课后大家可以继续研究。
课堂作业:《补充习题》。
板书设计:略
教学反思:
《加法运算律》这一节课是在学生经过较长时间的四则运算学习,对四则运算已有较多的感性认识的基础上学习的。学生从小学低年级开始就接触过加法的验算和口算等方面的知识,对此有较多的感性认识,这是学习加法运算律的基础。在这节课中,我有意识地让学生运用已有的经验,经历运算律的发现过程,让学生在“观察、发现、猜想、验证、得出结论”的数学学习方法中学会学习。一节课下来,自我感觉做得较成功的有以下几点:
小学生学习数学的积极性一定程度上取决于他们对学习素材的兴趣,现实的问题情境、有趣的数学游戏容易激发他们学习的.欲望。所以上课伊始,我以学生身边熟悉的:跳绳、踢毽子为教学的切入点,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。先让学生观察情境图,从图上获得哪些信息?根据这些信息你可以提出什么问题?这样的导入既吸引了学生注意力,又培养了学生的问题意识。学生能马上提出一些问题,为后面的探究学习做好了铺垫。通过情境,组织学生认真观察,分析根据提供的信息来选择所提问题有联系的条件进行分析、计算,使学生经历加法运算律产生和形成的过程。
数学课程标准指出:最有价值的知识是关于方法的知识,“授之以鱼不如授之以渔”。从一开始学习加法交换律时,让学生通过参与学习活动得出观察、发现、猜想、验证、结论这一学习方法。并应用这一方法去学习加法结合律。让学生在合作与交流中去探究加法的结合律,合理地构建知识。学生掌握了学习方法就等于拿到了打开知识宝库的金钥匙。在教学时,我注意了以下几方面的问题:一是在猜测中产生举例验证的心理需求。在学生根据问题情境得28+17=45、17+28=45之后,学生通过观察发现交换两个加数的位置,和相等。我适时提出这样的猜想:“是不是任意两个加数交换位置,和都相等呢?”学生不敢肯定,有了举例验证的内在需求。二是注意让学生在交流共享中充实学习材料,增强结论的可靠性。课上的时间有限,学生的独立举例是很有限的,我通过让学生同桌合作,共同举例,达到资源共享,丰富了学习材料和数学事实,知识的归纳顺理成章。三是鼓励学生用喜欢的方法表示规律。学生思维的浪花又一次激起,有的用图形表示:△+○=○+△,有的用文字表示:甲数+乙数=乙数+甲数,也有的用字母表示:a+b=b+a。这样的思维方式既是对加法交换律的概括与提升,又能发展符号感。
在课堂上我及时评价总结,肯定学生在学习过程中的点滴进步,捕捉学生在探索过程中的闪光点。学习内容的理解也提升到一个更高的层面。
当然,一节课下来也有不少遗憾。在课堂教学中,我没有准确把握好每一个孩子,驾驭课堂的能力还不够。整节课,由于新授部份花的时间较多,显得有些拖沓,有些细节引导还不是很到位,还需要加强,但在以后的教学中我会不断地挖掘,不断学习。
《加法运算律》教学反思与评价篇三
今天我和学生一起学习了有理数的加法。课堂环节基本上是这样的:
提问有理数的加法法则并进行了相应练习。发现同学们这部分掌握的.非常好,及时鼓励表扬的学生。那么我们这一节课一起看一下加法的运算律在有理数范围内是否也适应呢?我们一起探讨一下:同桌之间进行交流
(1)(-8)+(-9)(-9)+(-8)
(2)4+(-7)(-7)+4
(3)6+(-2)(-2)+6
(4)[2+(-3)]+(-8)2+[(-3)+(-8)]
(5)10+[(-10)+(-5)][10+(-10)]+(-5)
1有理数的加法的运算律
2紧跟跟踪练习:要求学生独立完成,并找4号同学去黑板练习,并进行讲解点拨总结规律方法。
1.12+(-8)+11+(-2)+(-12)
2.6.35+(-0.6)+3.25+(-5.4)
3.1+(-2)+3+(-4)+…+20xx+(-20xx)
谈谈本节课的收获。
要求学生独立完成,并找同学核对答案。
【达标检测】试一试你能行!
1.(-28)+29=29+(-28)利用的是加法的________________.
2.(-3)+7+(-4)+3=[(-3)+3]+7+(-4)利用的是________________.
3.若a,b互为相反数,且c的绝对值是1,则c-a-b的值为( ).
4.计算:
(1)(-7)+(-6.5)+(-3)+6.5;
(2)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;
(3)(-18.65)+(-6.15)+18.15+6.15.
学科班长评出本节课的优胜小组及个人。
本节课的重点是有理数加法的运算律,难点是:灵活运用加法运算律进行简化运算。课堂中学生通过自主互助交流,师生不断地总结规律和方法,解题技巧,总体来说课堂效果很好。学生都能掌握解题技巧。