2023年六年级上册数学教材 小学一年级数学教案人教版上册(九篇)
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。优秀的教案都具备一些什么特点呢?又该怎么写呢?那么下面我就给大家讲一讲教案怎么写才比较好,我们一起来看一看吧。
六年级上册数学教材 小学一年级数学教案人教版上册篇一
1、在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2、会正确地读、写正、负数,知道0既不是正数,也不是负数。
3、使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
教学重点:
负数的意义和负数的读法与写法。
教学难点:
理解0既不是正数,也不是负数。
教具准备:
多媒体课件
教学方法:
教师讲授、合作交流
教学过程:
一、复习导入
提出问题:举例说明我们学过了哪些数?
教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?
二、创设情境、学习新知
1、教学例1。
(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”
同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?
为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?
这里有零下6℃、零上6℃,都记作6℃行吗?
你有什么简洁的方法来表示他们的不同呢?
教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第87页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2、自主学习例2。(进一步认识正数和负数)
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
我们再来看x疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?
引导学生交流:吐鲁番盆地比海平面低155米。
教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)
教师追问:你是怎么想到用这种方法来记录的呢?
最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。
(2)巩固练习:教科书第88页试一试。
3、小组讨论,归纳正数和负数。
教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?
提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)
通常正号可以省略不写。负号可以省略不写吗?为什么?
最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)
三、运用新知,课堂作业
1、课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。
2、课堂活动第2题。同桌先讨论,然后反馈。
四、小结
同学们,今天我们认识了负数。你有什么收获?
五、课堂作业
练习二十二第1、4题。
家庭作业:练习二十二第2、3题。
板书设计:
负数的初步认识
正数:20、22、14、 +8844.43…
0:既不是正数也不是负数
负数:-2、-30、-10、-15、-155…
六年级上册数学教材 小学一年级数学教案人教版上册篇二
教学内容:教科书第1页的例1、试一试和练一练,练习一的第1~3题。
教学目标:
1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。
2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。
教学过程:
一、教学例1
1、出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。
学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?
提出要求:根据这两个已知条件,你能求出哪些问题?
引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。
在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?
2、引导思考: 这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?
小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。
启发:根据上面的讨论,你打算怎样列式解答这个问题?
学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?
3、进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?
学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?
联系学生的讨论明确:从125%中去掉与单位1相同的部分,就是实际造林比原计划多的百分数。
提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?
学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?
二、教学“试一试”
1、出示问题:原计划造林比实际少百分之几?
启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?
学生作出猜想后,暂不作评价。
提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?
2、学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?
小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。
三、指导完成“练一练”
1、要求学生自由读题。
2、提问:你是怎样理解“2005年在读研究生的人数比2004年增加了百分之几”这个问题的?
学生讨论后,要求他们各自列式解答。
3、根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?
学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。
四、指导完成练习一第1~3题
1、做练习一第1题。
可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。
2、做练习一第2题。
先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。
3、做练习一第3题。
先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。可提醒学生利用计算器进行计算。
五、全课小结
通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?
六年级上册数学教材 小学一年级数学教案人教版上册篇三
严格遵循党的教育方针,爱岗敬业,正确传授学生知识,并对学生进行适当的思想教育,培养其成为新时期现代化建设的接班人和建设者。认真培养其数感,提高其计算能力,培养其空间观念,并能把所学的知识应用到生活实际中去,解决实际生活中的问题。
本班共有57名学生,其中男生较多。本班的大部分学生都是来自农村,从去年一年的教学情况来看这个班的学习习惯较差,成绩出众者也不多,高分也比较少,即使是达到优秀率的同学在同年级中所占比例较少,个别男生学生学习态度较差,对提高全班整体成绩有比较大的难度。特别是作业习惯和自习习惯,因此必须对其进行培养。另外,还有少数学生的家长到外地打工等,孩子留在家里由爷爷、奶奶或亲戚照看,或是寄宿在宿舍,这样不利于对孩子的教育,两极分化比较严重,因此对学生的关心和思想教育也十分重要。今后打算如下:
首先,还是加强学习习惯培养,如学前的自习、课后的复习等。
其次,这学期分数的计算占了极大一块内容,所以培养他们的计算能力是关键,可以有目的的进行计算练习。
一要求计算仔细。
二是加强计算的基础练习。
三是加强口算训练。
四是引导学生使用简便方法。
在教学中加强数学数量关系的分析。让学生学会分析,学会审题,提高解题能力。最后在激发学生学习兴趣方面多寻找方法,使他们乐学,愿学。
本册教材包括以下几个部分:
1、数与代数数的认识——认识百分数;数的运算——分数乘法、分数除法、分数四则混合运算、解决问题的策略;式与方程——方程;比和比例——认识比。
2、空间与图形——长方体与正方体。
3、统计与概率——可能性。
4、实践与综合应用——表面积的变化;大树有多高;算出他们的普及率。
1、让学生学会运用等式的性质解方程,同时会列方程解决相应的实际问题,经历将现实问题抽象为方程的过程,积累经验,发展抽象能力和符号感。
2、通过学生的操作、观察,认识长方体、正方体的特征和展开图;长方体和正方体的表面积和体积;体积、容积单位和体积单位的进率,进一步积累空间与图形的学习经验,联系生活实际解决问题,增强空间观念,发展数学思考。
3、让学生体会分数乘除法的意义、分数乘除法的计算方法,运用简单的分数乘除法解决实际问题,学会分数连乘连除认识倒数,以及分数连除和乘除混合运算,体会数学知识间的内在联系,感受数学知识和方法的运用价值,提高学好数学的信心。
4、使学生在现实中理解比的意义及比的各部分名称,学会求比值及比的基本性质和化简比,能解决有关比的实际问题(按比例分配)。进一步体会数学知识之间的内在联系,培养观察、比较、抽象、概括以及合情推理的能力。
5、使学生理解并掌握分数四则混合运算(包括简便计算)并能解决稍复杂的分数乘法实际问题,体会数学知识和方法在解决实际问题中的价值,获得成功体验,提高学习数学学习兴趣和信心。
6、初步学会用替换(置换)、假设的策略解决实际问题,确定解题思路,并有效地解决问题,进一步发展分析、综合和简单推理能力。
7、初步掌握用分数表示简单事件发生的可能性,能根据事件发生的可能性大小设计相应的活动方案进一步体会数学之间的内在联系,不断发展和增强数感。
8、在情境中体会百分数的意义,学会百分数与小数、分数的互相改写,并运用百分数的知识实际问题。
9、结合数学教学在课堂中对学生开展环境教育,使学生认识保护环境的重要性,知道保护环境关系到我们国家的生存,人类的发展,,让学生在潜移默化中领悟环保的重要性,掌握环保的简单知识,从小树立良好的环保意识、资源意识。
1、充分利用学生熟悉、感兴趣的和富有现实意义的素材吸引学生,让学生主动参与各种数学活动中来,提高学习效率,激发学习兴趣,增强学习信心。
2、认真研读教材,明确本册课本的编写意图,注意与老师之间的交流与切磋,循序渐进地采取有效、易懂教学策略,让每个学生有所发展。
3、切实使用好与课本配套的教学辅助用书、教具、学具。
4、加强计算教学,计算是本册教材的重点,一方面引导学生探索并理解基本的计算方法,另一方面也通过相应的练习,帮助学生形成必要的计算技能,同时注意教材之间的衔接,对内容进行有机的整合,提高解决实际问题的能力。
5、开展帮教结对活动,对后进生建立家校联系卡,及时反映学校里的学习情况,促使其提高成绩,帮助他们树立学习的信心与决心。
6、介绍课外数学知识与方法,开拓学生的视野,增强学生学习兴趣。
六年级上册数学教材 小学一年级数学教案人教版上册篇四
学习内容:完成课本第2~3页练习一第4至8题。
课堂目标:
1、帮助学生在不同的问题情境中巩固解决“求一个数比另一个数多(少)百分之几”问题的思考方法。
2、进一步明晰“求一个数比另一个数多(少)百分之几”与“求一个数是另一个数的百分之几”这两类问题的联系与区别,加深对解决相关问题的基本方法的思考。
教学准备:
教学光盘及多媒体设备
教学过程:
一、复习引入。
如何解决“求一个数比另一个数多(少)百分之几”的实际问题。你是怎样解决的?还有别的方法吗?
二、完成练习一第4~8题
1、完成第4题。
学生读题后独立解决。
交流,说说你是怎样解答的?解答第(2)题时还有别的方法吗?
比较这两题有什么不同?
2、完成第5题。
先让学生独立解答,然后组织交流和比较。
重点把第(2)、(3)题与第(1)题比较。
3、完成第6题。
指名学生读题,理解什么是“孵化期”。然后学生独立解答。交流检查正确率,帮助有困难的学生理解。
4、完成第7题。
学生读题,说说你是怎样理解的?
明确:“巧克力的价钱比奶糖贵百分之几”,就是“巧克力的价钱比奶糖多百分之几。”
学生解答后交流思考过程。
5、完成第8题。
学生独立解答。可以用计算器计算。完成后交流。
三、读读“你知道吗”
学生自主阅读。
交流:读完后你有什么想法?
思考:为什么不可以说2006年我国的国内生产总值增长幅度比2005年提高了0.3%?
突出单位1不同的两个百分数不能直接相减。
你还能举些有关百分点和负增长的例子吗?
四、拓展练习
1、甲数与乙数的比是4:5,乙数是甲数的( )%,甲数比乙数少()%。
2、一个长方形的长和宽各增加10%,面积增加( )%。
3、一辆汽车,从甲地去乙地行驶了10小时,从乙地回甲地行驶了8小时。回来时比去时所用时间缩短了百分之几?速度提高了百分之几?
4、某小学六年级有四个班,由王、陈两位老师任教,这四个班的人数分别是:一班60人,二班40人,三班50人,四班50人。期末考试及格率的情况统计是:一班的及格率是95%,二班的及格率是85%(这两个班由王老师任教);三班的及格率是96%,四班的及格率是86%(这两个班由陈老师任教)。那么,这两位老师谁教的学生及格率更高一些呢?
五、全课小结
对自己本节课的学习情况进行评价:通过本节课的学习你有什么收获?课堂上你的练习情况如何?正确率高吗?
六、练习作业
1、作业:补充习题第2页
六年级上册数学教材 小学一年级数学教案人教版上册篇五
教学内容:教材第118页总复习第1——5题。
教学目标:
1、理解分数乘、除法的意义、倒数的意义,分数乘除法的关系,掌握分数乘、除的计算方法,能正确地进行分数乘除法的计算。
2、掌握比的意义,理解比与分数、除法的关系,比的基本性质,会求比值和化简比。
3、掌握解决分数乘除法问题的思路,能熟练地分析数量关系,正确地解决分数除法问题。
教学重点:概念和计算方法。
教学难点:掌握解决分数乘,除法问题的思路和方法。
教学过程:
一、分步复习活动准备
将学生课前就本节复习内容提出的知识性问题和难点问题分类整理,制成问题卡,交由3位学生主持复习。
师:同学们,经历了将近一个学期的学习,大家都有不同程度的收获,为了帮大家更好地复习整理本节知识,我们请3位同学分别主持复习。现在请第一位主持人出场。
二、复习分数乘除法的知识
1、主持人持知识问题卡提出问题,分别指名回答。
分数乘法的意义是什么?与整数乘法相同吗?
分数除法的意义是什么?与整数除法相同吗?
分数乘法的计算法则是怎样的?
什么叫倒数?怎样求一个数的倒数?
分数除法的计算方法是怎样的?
2、主持人持难点问题卡提出问题,指名回答。
分数乘、除法的关系是怎样的?
分数除法的计算具体要注意几点?
0有倒数吗?为什么?1呢?
3、教师组织学生活动
计算。
3/4×2/5= 2/3×5/6= 7/9×18= 3/10÷3/4= 5/9÷5/6=
21÷7/9= 3/10÷2/5= 5/9÷2/3= 6/11÷5/12=
4、复习比的知识
第二位主持人提出问题,学生回答。
知识性问题:
什么叫比?比的各部分名称是怎样的?举例说明?
怎样求比值?
比与分数、除法有什么联系?
比的基本性质是什么?怎样化简比?
难点问题:
为什么比的后项不能为0?
求比值与化简比有什么区别?
练习:
3÷4=()/()=()/12=():32=12:()
说出下面每个比的前项、后项,并求出比值。2:5 0.6÷0.3 4/7
把下面各比化成最简整数比。 8:12 0.25:0.45 1/4:1/8
(5)复习解决问题的解题思路和方法。
第三位主持人上场。
怎样解决分数乘除法问题呢?
主持人点4名同学板演教材第118页第3、4、5题。
对4名学生做的情况进行评议。
对比观察第3题第(1)(2)小题。
数量关系式是:原价×1/5=现价
第(1)小题已知原价求现价,用乘法计算。第(2)小题已知现价求原价,用除法计算或用方程解。
学生归纳分数乘除法问题的规律。
单位“1”的量已知,求一个数的几分之几是多少,用乘法计算;
单位“1”的量未知,已知一个数的几分之几是多少,求这个数,用除法计算。
验证第4、5题。
第4题,把地球总面积看作单位“1”,求单位“1”的量用除法计算。
第5题,先出示学生画的线段图。观察线段图结合理解:火车的速度已知,第1个单位“1”的量是火车的速度,求小汽车的速度用乘法计算,第二个单位“1”的量是喷气式飞机的速度,是未知的,要用除法计算。
主持人归纳:区分分数乘、除法问题,判断把谁看作单位“1”以及是已知还是未知,这是非常关键的一步,此外还应借助线段图分析数量关系,真正掌握知识。
师:归纳得真好。今天三位主持人在场上还有很多精彩表现,请同学们评一评。
三、应用练习
(1)完成练习二十七第5题。
(2)完成练习二十七第10、11题。
(3)完成练习二十七第7、8题,学生做后汇报思路和方法。
四、课堂小结
通过这节课的复习活动,你的学习有什么新的收获?
第二课时 总复习——百分数
教学内容:教材第119页总复习第6、7题。
教学目标:
1、理解百分数意义,掌握百分数和分数、小数的互化方法。
2、熟练运用百分数知识解决百分数问题,理解百分数问题的结构特征,归纳百分数问题的解题思路和方法。
3、培养学生解决问题的能力。体验百分数知识与日常生活的密切联系,培养学生应用知识的意识。
教学重点:运用百分数知识解决实际问题。
教学难点:归纳知识,形成体系。
教学过程:
一、创设情境导入
师:同学们,百分数在我们的生活中无处不有,只要我们留心它,发现它就在我们身边。
1、投影出示下面一段文字:
湖南汩罗义务教育阶段学生流失率低得令人咋舌。10年前初中是2.5%,小学是0.02%,现在小学连续10年的入学率,巩固率均为100%,初中流失率始终控制0.2%,近三年的数字是0.18%,0.17%和0.15%。
2、学生阅读文字,感知其中百分数。
3、从上面一段文字中你能发现什么?
从上面的百分数中中以看出汩罗义务教育实施情况非常理想;运用百分数很能够直观;百分数在实际应用中表示两个量之间的关系,一个量是另一个量的百分之几。
二、复习百分率的知识
1、师:看来,百分数的作用还真不小。你能理解上文中百分率的意思吗?
学生尝试理解流失率、入学率、巩固率的意思,教师指正。
2、复习已学过的一些百分率的计算公式。
3、学习理解烘干率和含水率。
完成教材第119页总复习第6题。
学生自学理解烘干率和含水率的意思,然后说一说,议一议。
烘干率=烘干后的重量/烘前的重量×100%
含水率=(烘前的重量-烘干后的重量)/烘前的质量×100%
学生试求烘干率和含水率,然后集体订正。
三、复习百分数的一般应用题。
1、求一个数比另一个数多(或少)百分之几。
2、求一个数多(或少)百分之几的数是多少
师;我们已经学习了运用百分数知识解决百分数的一般问题。现在大家回顾已学知识,把你掌握的方法告诉小组的成员。
分组讨论,交流分析问题的思路和解决问题的方法。
小组汇报。可能有以下几种:
解决百分数的问题可以依照解决分数问题的方法。
在分析问题时,可以先画线段图加深理解,判断单位“1” 的量是已知还是未知,找对应关系,写数量关系式。
根据百分数题型结构特征确定解法。
多(少)的数/另一个数=一个数比另一个数多(少)百分之几
一个数×(1+几%)=比一个数多(或少)百分之几的数。
综合问题结合实际来解答。
四、应用练习
1、完成总复习第7题
学生试做,指名板演。
方法一:(2622—2476)÷2476=146÷2476≈5.9%
方法二:2622/2476-1≈1.059-1≈5.9%
引导学生比较两种思路方法。
2、完成练习二十七第13题。
学生独立完成,然后说说各自的思路。
3、完成练习二十七第14、15题。
教师:九折是什么意思?
利息怎样计算?本息又是什么意思?
学生独立完成。
学生在班上交流。
五、课堂小结
通过这次学习活动,你有什么新的收获?
板书设计:
百分数——一个数是另一个数的百分之几
(1)百分率=()/()×100%
(2)一个数比另一个数多(少)百分之几
多(少)的数/另一个数多(少)百分之几
(3)比一个数多(少)百分之几的数是多少?
一个数×(1+n%)=比一个数多(少)百分之几的数
(4)售价×几折=实付钱数
收入×税率=应纳税额
利息=本金×利率×时间
六年级上册数学教材 小学一年级数学教案人教版上册篇六
教学内容:
p7“回顾与整理”、“练习与应用”第1—4题
教学目标:
1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。
2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。
教学资源:小黑板
教学过程:
一、揭示课题
本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。
二、回顾与整理
1、出示小组讨论题:
(1)像3.4_+1.8=8.6、5_-_=24这样的方程各应怎样解?
(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。
2、让学生围绕这两个问题进行独立思考。
3、把各自思考的情况在小小组内进行交流。
4、全班交流。
讨论题(1) 可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。
讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。
三、练习与应用
1、解方程
180+6_=330 27_+31_=145 _-0.8_=10
2.2_-1=10 15_÷2=60 4_+_=3.15
(1)让学生独立完成,指名板演。
(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。
2、解决实际问题
(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。
① 武汉长江大桥铁路桥长多少米?
② 武汉长江大桥公路桥长多少米?
__ 让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:
武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度
武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度
__ 问:在列方程时应该怎样表示题中的两个未知数量?
(2)练习与应用第3题
__ 先让学生看图后说说了解到了哪些信息。
__ 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?
__ 问:你能说说题中数量之间的相等关系吗?
(学生如有困难,教师可以画线段图帮助学生理清数量关系)
随机板书:
小树原有的高度+6个月长的高度=小树现在的高度
(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?
__ 学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。
__ 再让学生独立解答,指名板演。
__ 交流时让学生结合所列的方程说说自己的思考过程。
三、总结: 通过今天的整理与练习,你又有哪些收获?还有什么疑惑?
四、作业: p7“练习与应用”第2、3题。
六年级上册数学教材 小学一年级数学教案人教版上册篇七
一、教材内容
人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。
二、教学目标
1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。
2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。
3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。
三、教学重、难点
认识负数的意义。
四、教学过程
(一)谈话交流
谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?
(二)教学新知
1.表示相反意义的量
(1)引入实例
谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。
① 六年级上学期转来6人,本学期转走6人。
② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。
③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。
④ 一个蓄水池夏季水位上升米,冬季水位下降米。
指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)
(2)尝试
怎样用数学方式来表示这些相反意义的量呢?
请同学们选择一例,试着写出表示方法。
……
(3)展示交流
……
2.认识正、负数
(1)引入正、负数
谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。
介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。
“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。
像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。
(2)试一试
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识
(1)说一说存折上的数各表示什么?(教学例2。)
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
① 同桌交流。
② 全班交流。根据学生发言板书。
这样的正、负数能写完吗?(板书:… …)
强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”
(1)看一看、读一读
谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨: -18 ℃~-5 ℃
北京: -6 ℃~6 ℃
深圳: 15 ℃~25 ℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说
我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)
说一说,你怎么这么快就找到了?
(课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)
你能很快找到12 ℃、-3 ℃吗?
(3)提升认识
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)
“0”是正数,还是负数呢?
在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
5.练一练
读一读,填一填。
6.出示课题
同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。
六年级上册数学教材 小学一年级数学教案人教版上册篇八
教学目标:
1、使学生明确本学期的学习任务。
2、使学生巩固五年级的相关知识,为新知识的学习奠定基础。
教学过程:
一、 课堂教学常规的说明:
1、上课的各项要求说明等。
2、练习的各项要求说明等。
3、其他说明。
二、 复习旧知:
(一) 填空:
1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的带分数是( )。
2、1米的3/7是( )米,3米的1/7是( )米。
3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。
(二) 解决问题:
1、一个正方形的周长与圆的周长相等,已知正方形的边长是3.14米,圆的半径是多少米?
2、把一些桃平均分给12只猴子,正好还剩1个;如果平均分给8只猴子,正好也剩1个。这些桃至少有多少个?
3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?
4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?
5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?
6、如果用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?
7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?
8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?
9、一个圆形花坛的周长是15.7米,在花坛周围铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?
10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)
(三) 拓展练习:
1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从此站开过后,再过多少时间又同时从此站开过?
2、(1)工人们修一段路,第一天修了公路全长的一半还多2千米,第二天修了剩下的一半还少1千米,还剩20千米没有修完。公路的全长是多少千米?
(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?
3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?
4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?
5、公路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?
6、一个最简真分数的分子,分母是两个连续自然数,如果分母加上4,这个分数约分后是2/3,原来这个分数是多少?
六年级上册数学教材 小学一年级数学教案人教版上册篇九
教学目标
1、理解分数乘以整数的意义;掌握计算法则;正确计算分数乘以整数的算式题。
2、浸透事物是相互联系、相互转化的辩证唯物主义观点。
教学重点
分数乘以整数的意义及计算方法。
教学难点
分数乘以整数的计算法则的推导。
教具准备
1、自制两套三层复式投影片。
2、投影图片3张。
教学过程设计
(一)复习
(出示投影一)
1、口算:
问:怎样计算?(分母不变分子相加。)
2、根据题意列出算式:
(1)5个12是多少?
(2)3个14是多少?
列式:
(1)12+12+12+12+12或125
(2)14+14+14或143
题中的两个式子哪个简便?(125,143)
它们各表示什么意思呢?(5个12是多少? 3个14是多少?)
能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)
这是整数乘法的意义,它对于分数乘法适用吗?
(二)讲授新课
1、分数乘以整数的意义。
多少块?(投影)
2份。)
听回答,老师边重复边投影(三层复式投影片)。
把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9份),取其中2份(覆盖2份是红色的)。
(3)根据图意列出算式。
问:这个加法算式有什么特点?(三个加数相同。)
问:为什么?(三个加数相同。)
问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)
师:这就是今天我们要学习的分数乘以整数。(板书课题)
师:分数乘以整数表示什么意思呢?观察上面两个算式,并说出
(分数乘以整数的意义与整数乘法的意义相同,就是求几个相同加数
练一练(投影片二)
①看图写算式。
②根据意义列式。
③看算式说意义。
2、分数乘以整数的法则。
(1)推导法则。
我们了解了分数乘以整数的意义,你想知道怎样计算吗?
①导出计算方法。
你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新知识转化为已经学过的旧知识来进行计算。(可以互相说、互相看。)
该怎么办呢?
引导学生讨论得出:
边加上虚线框。)
(2)根据上面方法试算下面各题。
(学生在练习本上做,用投影反馈。)
②归纳法则。
通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?
师:比一比,看哪个组的同学总结的语言准确又简练。小组讨论,总结出法则。
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。(板书)
③应用法则计算。
有不一样的吗?强调结果化成带分数。
还有不同的做法吗?
讨论,这两种方法哪种简单?为什么?
强调:能约分,要先约分;结果是假分数一定要化成整数或带分数。
(三)巩固练习
1、看图写算式。
第3页的第1题,看图写算式。(填书上)
行间巡视,注意:被乘数和乘数的位置。
2、先说算式意义,再填空。
3、看算式,约分计算。
4、口算:
5、判断:(打手势)
(四)课堂总结
今天我们学习了什么内容?分数乘以整数的意义是什么?分数乘以整数的法则是什么?计算时应注意什么?(能约分要约分,结果是假分数,要化成整数或带分数。)
课堂教学设计说明
1、确定教学目标、教材的重点难点,它对整个教学过程具有导向、激励和评价作用。本节课的重点是分数乘以整数的意义与法则,难点是法则的推导。在设计教案中,以突出重点为中心,教法与内容设计要服务于中心。
2、依据知识的迁移,进行很必要的铺垫,利用知识之间的联系,精心设计复习题,为教学重点服务,使学生顺利掌握分数乘以整数的意义与整数乘法意义相同。同时复习分数加法,为推导公式进行铺垫。
3、重视法则推导过程,应用转化思想,启发学生把新知识转化为已学过的旧知识。进一步了解知识之间的联系,适时点拨,激发学生主动探索新知识。教师有意识地让学生参与法则推导,让学生先尝试、观察、讨论、总结,而后再概括法则,使学生学得生动活泼,发挥小组的团结协作作用。在课堂上,不仅有师生之间的信息交流,而且还有同学之间的信息交流。教师根据信息反馈,及时对教学过程进行调控,以达到真正提高课堂教学的目的。