最新初一数学上册教案反思(四篇)
作为一位杰出的教职工,总归要编写教案,教案是教学活动的总的组织纲领和行动方案。写教案的时候需要注意什么呢?有哪些格式需要注意呢?下面是小编整理的优秀教案范文,欢迎阅读分享,希望对大家有所帮助。
初一数学上册教案反思篇一
能用圆规作一条线段等于已知线段。
重点:了解线段性质及比较方法,两点之间的距离的概念和线段中点的概念。
难点:比较线段长短的方法,线段中点的表示方法和应用。
学习过程:
课前热身:
辨别直线、射线、线段,并能用不同的方法表示一条线段。
自主学习:
阅读课本139页内容,完成下列问题,
1、在地面上有两点和,处放有一块骨头,三只不同颜色的小狗从点跑到点吃骨头,所经过的路线不同,请同学们辨别,哪只狗更聪明。
结论:
2、探究:作一条线段等于已知线段
方法:
3、探究:比较线段的长短
怎样比较两根筷子的长短。
方法:
4、探究:线段的中点
通过学生玩跷跷板,抽象出线段的中点
线段的中点的定义:
因为点在线段上,m是ab的中点
所以am==0.5.
1分钟记忆:说说线段的性质、线段的中点
反馈检测:
判断:
1、两点之间的线段叫做这两点间的距离( )
2、如果点是线段的中点,那么( )
3、如果,那么点是的中点( )
选择:
1、两点之间线段的长度是( )
a.线段的中点b.线段最短
c.这两点间的距离d.线段的三等分点
2、在跳绳比赛中,要在两条长度相近的绳中挑选一条最长的绳子参 加比赛,最简单的选择方法是( )
a.把两根绳子接在一起
b.把两条绳子一端对齐,然后拉直两条绳子,另一端在外面的即为长绳
c.用尺量绳长
d.没有办法挑选
3、已知线段,在直线上画线段,使,求线段的长。
实践应用
1、有一弯曲的灌渠流经一片农田,为了缩短流程,以减少分水的过分流失,现要将该灌渠改直,请问这应用的是什么结论?
知识点1线段基本事实及两点间的距离
1、下列说法正确的是( )
a.两点之间直线最短
b.画出a、b两点间的距离
c.连接点a与点b的线段,叫做a、b两点间的距离
d.两点之间的距离是一个数,不是指线段本身
2、把弯曲的河道改直,能够缩短航程,这样做的道理是( )
a.两点之间,射线最短
b.两点确定一条直线
c.两点之间,线段最短
d.两点之间,直线最短
2、(知识点1,2,4)下列说法正确的是( )
a.两点之间的所有连线中,直线最短
b.若p是线段ab的中点,则ap=bp
c.若ap=bp,则p是线段ab的中点
d.两点之间的线段叫作这两点之间的距离
3 。(题型二)把一段弯曲的公路改为直路,可以缩短路程,其理由是( )
a.两点之间线段最短b.两点确定一条直线
c.线段有两个端点d.线段可以比较大小
初一数学上册教案反思篇二
1、会进行包括小数或分数的有理数的加减混合运算。
2、熟练地进行有理数加减混合运算,并利用运算律简化运算。
3、会比较“加减法统一为加法”与“省略加号的代数和”两种计算形式。
1、准确迅速地进行有理数的加减混合运算,加减运算法则和加法运算律。
2、减法直接转化为加法及混合运算的准确性,省略加号与括号的代数和计算。
任务一:温故知新
1、完成课本44页习题2、7的第1、2题,写在作业本上。
一、选择题(共10题)
1、下列关于有理数的加法说法错误的是( )
a、同号两数相加,取相同的符号,并把绝对值相加
b、异号两数相加,绝对值相等时和为0
c、互为相反数的两数相加得0
d、绝对值不等时,取绝对值较小的数的符号作为和的符号
答案:d
解析:解答:d选项应该是有理数相加时,如果绝对值不等时,取绝对值较小的数的符号作为和的符号
分析:考查有理数的的加法法则
2、有一架直升飞机从海拔1000米的高原上起飞,第一次上升了1500米,第二次上升上-1200米,第三次上升了1100米,第四次上升了-1700米,求此时这架飞机离海平面多少米?
3、10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7、5,-3,5,-8,3、5,4、5,8,-1、5
这10名学生的总体重为多少?10名学生的平均体重为多少?
初一数学上册教案反思篇三
1、明白生活中存在着无数表示相反意义的量,能举例说明;
2、能体会引进负数的必要性和意义,建立正数和负数的数感。
重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。
难点:对负数的意义的理解。
一、知识导向:本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。
二、新课拆析:1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,…,,
2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。
如:汽车向东行驶3千米和向西行驶2千米
温度是零上10°c和零下5°c;收入500元和支出237元;水位升高1.2米和下降0.7米; 3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的数(零除外)前面放上一个“—”号来表示。
如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°c表示为10°c,零下5°c表示为-5°c概括:我们把这一种新数,叫做负数,如:-3,-45,…过去学过的那些数(零除外)叫做正数,如:1,2.2…零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…
三、阶梯训练:p18练习:1,2,3,4。
四、知识小结:
从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。
五、作业巩固:
1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示; 2、分别举出几个正数与负数(最少6个)。 3、p20习题2.1:1题。
初一数学上册教案反思篇四
【学习目标】:
1、掌握有理数的 概念,会对有理数按一定标准进行分类,培养分类能力;
2、了解分类的标准 与集合的含义;
3、体验分类是数学上常用的处理问题方法;
【学习重点】:正确理解有理数的概念
【学习难点】:正确理解分类的标准和按照一定标准分类
5、对-3.14,下面说法正确的是(b)
a.是负数,不是分数
b.是负数,也是分数
c.是分数,不是有理数
d.不是分数,是有理数
8、如果a与1互为相反数,则|a|=( )
a.2 b.﹣2 c.1 d.﹣1
【考点】绝对值;相反数。
【分析】根据互为相反数的定义,知a=﹣1,从而求解。
互为相反数的定义:只有符号不同的两个数叫互为相反数。
【解答】解:根据a与1互为相反数,得
a=﹣1.
所以|a|=1.
故选c.
【点评】此题主要是考查了相反数的概念和绝对值的性质。
9、若|1﹣a|=a﹣1,则a的取值范围是( )
a.a>1 b.a≥1 c.a<1 d.a≤1
【考点】绝对值。
【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案。
【解答】解:∵|1﹣a|=a﹣1,
∴1﹣a≤0,
∴a≥1,
故选b.
【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大。