最新高中数学说课稿10分钟(七篇)
每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面我给大家整理了一些优秀范文,希望能够帮助到大家,我们一起来看一看吧。
高中数学说课稿10分钟篇一
1.教材分析
直线的方程是学生在初中学习了一次函数的概念和图象及高中学习了直线的斜率后进行研究的。直线的方程属于解析几何学的基础知识,是研究解析几何学的开始,对后续研究两条直线的位置关系、圆的方程、直线与圆的位置关系、圆锥曲线等内容,无论在知识上还是方法上都是地位显要,作用非同寻常,是本章的重点内容之一。“直线的点斜式方程”可以说是直线的方程的形式中最重要、最基本的形式,在此花多大的时间和精力都不为过。直线作为常见的最简单的曲线,在实际生活和生产实践中有着广泛的应用。同时在这一节中利用坐标法来研究曲线的数形结合、几何直观等数学思想将贯穿于我们整个高中数学教学。
2.学情分析
我校的生源较差,学生的基础和学习习惯都有待加强。又由于刚开始学习解析几何,第一次用坐标法来求曲线的方程,在学习过程中,会出现“数”与“形”相互转化的困难。另外我校学生在探究问题的能力,合作交流的意识等方面更有待加强。
根据上述教材分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1)了解直线的方程的概念和直线的点斜式方程的推导过程及方法;
(2)明确点斜式、斜截式方程的形式特点和适用范围;初步学会准确地使用直线的点斜式、斜截式方程 ;
(3)从实例入手,通过类比、推广、特殊化等,使学生体会从特殊到一般再到特殊的认知规律;
(4)提倡学生用旧知识解决新问题,通过体会直线的斜截式方程与一次函数的关系等活动,培养学生主动探究知识、合作交流的意识,并初步了解数形结合在解析几何中的应用。
4. 教学重点与难点
(1)重点: 直线点斜式、斜截式方程的特点及其初步应用。
(2)难点:直线的方程的概念,点斜式方程的推导及点斜式、斜截式方程的应用。
1.教法分析:根据学情,为了能调动学生学习的积极性,本节课采用“实例引导的启发式”问题教学法。帮助学生将几何问题代数化,用代数的语言描述直线的几何要素及其关系,进而将直线的问题转化为直线方程的问题,通过对直线的方程的研究,最终解决有关直线的一些简单的问题。另外可以恰当的利用多媒体课件进行辅助教学,激发学生的学习兴趣。
2.学法分析:学生从问题中尝试、总结、质疑、运用,体会学习数学的乐趣;通过推导直线的点斜式方程的学习,要了解用坐标法求方程的思想;通过一个点和方向可以确定一条直线,进而可求出直线的点斜式方程,要能体会“形”与“数”的转化思想。
下面我就对具体的教学过程和设计加以说明:
整个教学过程是由六个问题组成,共分为四个环节,学习或涉及四个概念:
温故知新,澄清概念----直线的方程
深入探究,获得新知--------点斜式
拓展知识,再获新知--------斜截式
小结引申,思维延续--------两点式
平面上的点可以用坐标表示,直线的倾斜程度可以用斜率表示,那么平面上的直线如何表示呢?这就是本节要学习的内容。
(一)温故知新,澄清概念----直线的方程
问题一:画出一次函数y=2x+1的图象;y=2x+1是一个方程吗?若是,那么方程的解与图象上的点的坐标有何关系?
[学生活动] 通过动手画图,思考并尝试用语言进行初步的表述。
[教师活动] 对于不同学生的表述进行分析、归纳,用规范的语言对方程和直线的方程进行描述。
[设计意图]从学生熟知的旧知识出发澄清直线的方程的概念,试图做到“用学生已有的数学知识去学数学”,从而突破难点。通过对这个问题的研究,一方面认识到以方程的解为坐标的点在直线上,另一方面认识到直线上的点的坐标满足方程;从而使同学意识到直线可以由直线上任意一点p(x,y)的坐标x和y之间的等量关系来表示。
问题二:若直线经过点a(-1, 3),斜率为-2,点p在直线l上。
(1) 若点p在直线l上从a点开始运动,横坐标增加1时,点p的坐标是 ;
(2)画出直线l,你能求出直线l的方程吗?
(3)若点p在直线l上运动,设p点的坐标为(x,y),你会有什么方法找到x,y满足的关系式?
[学生活动]学生独立思考5分钟,必要的话可进行分组讨论、合作交流。
[教师活动]巡视。肯定学生的各种方法及大胆尝试的行为;并引导学生观察发现,得到当点p在直线l上运动时(除点 a外),点p与定点a(-1, 3)所确定的直线的斜率恒等于-2,体会“动中有静”的思维策略。
[设计意图]复习斜率公式;待定系数法;初步体会坐标法。同时引导学生注意为什么要把分式化简?(若不化简,就少一点),感受数学简洁的美感和严谨性。还要指出这样的事实:当点p在直线l上运动时,p的坐标(x,y)满足方程2x+y-1=0.反过来,以方程2x+y-1=0的解为坐标的点在直线l上。把学生的思维引到用坐标法研究直线的方程上来,此时再把问题深入,进入第二环节。
(二)深入探究,获得新知----点斜式
问题三: ① 若直线l经过点p0(x0,y0),且斜率为k,求直线l的方程。
②直线的点斜式方程能否表示经过p0(x0,y0)的所有直线?
[学生活动] ①学生叙述,老师板书,强调斜率公式与点斜式的区别。 ②指导学生用笔转一转不难发现,当直线l的倾斜角α=90°时,斜率k不存在,当然不存在点斜式方程;讨论k=0的情况;观察并总结点斜式方程的特征。
[设计意图] 由特殊到一般的学习思路,突破难点,培养学生的归纳概括能力。通过对这个问题的探究使学生获得直线点斜式方程;由②知:当直线斜率k不存在时,不能用点斜式方程表示直线,培养思维的严谨性,这时直线l与y轴平行,它上面的每一点的横坐标都等于x0,直线l的方程是:x=x0;通过学生的观察讨论总结,明确点斜式方程的形式特点和适用范围,通过下面的例题和基础练习,突破重难点。
问题四:分别求经过点且满足下列条件的直线的方程
(1) 斜率;(2)倾斜角; (3)与轴平行 ;(4)与轴垂直。
[练习]p95.1、2。
[学生活动]学生独立完成并展示或叙述,老师点评。
[设计意图]充分用好教材的例题和习题,因为这些题都是专家精心编排的,充分体现必要性及合理性;做到及时反馈,便于反思本环节的教学,指导下个环节的安排;突破重点内容后,进入第三环节。
(三)拓展知识,再获新知----斜截式
问题五:(1)一条直线与y轴交于点(0,3),直线的斜率为2,求这条直线的方程。
(2)若直线l斜率为k,且与y轴的交点是 p(0,b),求直线l的方程。
[学生活动]学生独立完成后口述,教师板书。
[设计意图] 由一般到特殊再到一般,培养学生的推理能力,同时引出截距的概念及斜截式方程,强调截距不是距离。类比点斜式明确斜截式方程的形式特点和适用范围及几何意义,并讨论其与一次函数的关系。通过下面的基础练习,突破重点。
[练习]p95.3。
[设计意图]充分用好教材习题,及时反馈本环节的教学情况,指导下个环节的安排。
(四)小结引申,思维延续----两点式
课堂小结 1、有哪些收获?(点斜式方程:;斜截式方程:;求直线方程的方法:公式法、等斜率法、待定系数法。)
2、哪些地方还没有学好?
问题六:(1)直线l过(1,0)点,且与直线平行,求直线l的方程。
(2)直线l过点(2,-1)和点(3,-3),求直线l的方程。
[学生活动]学生独立思考并尝试自主完成,可以相互讨论,探讨解题思路。
[教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,有时间的话,可以让学生口述解题思路,也可以投影学生的证明过程,纠正出现的错误,规范书写的格式;没时间就布置分层作业。
[设计意图](1)小题与上一节的平行综合,学生应该有思路求出方程;(2)小题解决方法较多,预设有利用公式法、等斜率法、待定系数法,让好一点的学生有一些发散思维的机会,以及课后学习的空间,使探究气氛有一点高潮。另外也为下节课研究直线的两点式方程作了重要的准备。
分层作业 必做题:p100.a组:1.(1)(2)(3)、5.
选做题:p100.a组:1.(4)(5)(6).
[设计意图]通过分层作业,做到因材施教,使不同的学生在数学上得到不同的发展,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展。
(一)实例引导。在字母运算、公式推导之前,总是用实例作为铺垫,使学生有学习知识的可能和兴趣,关注学困生的成长与发展。
(二)启发式教学。教学中总是以提问的方式叙述所学内容,如:1.直角坐标系内的所有直线都有点斜式方程吗?2.截距是距离吗?它可以是负数吗?3.你会求直线在轴上的截距吗?4.观察方程 ,它的形式具有什么特点?它与我们学过的一次函数有什么关系?等等。启发学生的思维,作好与学生的对话与交流活动。
(三)注重自主探究。设计问题链,环环相扣,使学生的探究活动贯穿始终。教师总是站在学生思维的最近发展区上,布设了由浅入深的学习环境突破重点、难点,引导学生逐步发现知识的形成过程。设计了两次思维发散点,分别是问题二和问题六的第(2)问,要求学生分组讨论,合作交流,为学生创造充分的探究空间,学生在交流成果的过程中,高效的完成教学任务。
高中数学说课稿10分钟篇二
说课:古典概型
麻城理工学校谢卫华
(一)教材地位及作用:本节课是高中数学(必修
3)第三章概率的第二节古典概型的第一课时,是在
随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。
根据本节课的地位和作用以及新课程标准的具体要求,制订教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率;
根据本节课的内容,即尚未学习排列组合,以及学生的心理特点和认知水平,制定了教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。
(二)根据新课程标准,并结合学生心理发展的需求,以及人格、情感、价值观的具体要求制订教学目标:
1.知识与技能
(1)理解古典概型及其概率计算公式(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率2.情感态度与价值观
概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象。适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例。使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是地科学态度和锲而不舍的求学精神
(三)教学方法:根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征,观
察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题。
(四)教学过程:
一、提出问题引入新课:在课前,教师布置任务,以数学小组为单位,完成下面两个模拟试验:试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要求每个数学小组至少完成20次(最好是整十数),最后由科代表汇总;
试验二:抛掷一枚质地均匀的骰子,分别记录“1点”、“2点”、“3点”、“4点”、“5点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由科代表汇总。
教师最后汇总方法、结果和感受,并提出问题:1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?
二、思考交流形成概念:学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深新概念的理解。我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。
基本事件有如下的两个特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和。给出例题1,让学生自行解决,从而进一步理解基本事件,然后让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性)。我们将具有这两个特点的概率模型称为古典概率概型,简称
古典概型。
三、观察分析推导公式:教师提出问题:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率
结果,发现其中的联系。实验一中,出现正面朝上的概率与反面朝上的概率相等,即
1“出现正面朝上”所包含的基本事件的个数,试验二中,出现各个点的概率相等,即
p(“出现正面朝上”)==
2基本事件的总数3“出现偶数点”所包含的基本事件的个数,根据上述两则模拟试验,可以概括总结出,古典
p(“出现偶数点”)==
6基本事件的总数
概型计算任何事件的
的理解,教师提问:在使用古典概型的概率公式时,应该注意什么?学生回答,教师归纳:应该注意,(1)要判断该概率模型是不是古典概型;
(2)要找出随机事件a包含的基本事件的个数和试验中基本事件的总数。
四、例题分析推广应用:通过例题2及3,巩固学生对已学知识的掌握,提高学生分析问题、解决问题的能力。让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件a包含的基本事件的个数和试验中基本事件的总数。适时利用列表数形结合和分类讨论等思想方法,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。
五、总结概括加深理解:学生小结归纳,不足的地方老师补充说明。使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。
(五)布置作业p123练习1、2题(六)板书设计
3.2.13.2.1古典概型古典概型试验一试验二基本事件
古典概型概率
计算公式
例3列表
例1树状图古典概型
例2
以上是我对《古典概型概型》这节课的理解和处理方法,欢迎各位专家朋友批评指正,谢谢!
说课教案:古典概型
麻城理工学校谢卫华
高中数学说课稿10分钟篇三
“函数的奇偶性”是人教版数学必修教材必修一第一章第三节的内容,本节的主要内容是研究函数的一个性质—函数的奇偶性,学习奇函数和偶函数的概念.奇偶性是函数的一条重要性质,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又为后续研究指数函数、对数函数、幂函数、三角函数的基础,因此,本节课起着承上启下的重要作用。 本节课的教学重点:函数奇偶性的概念及判定。
(1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断
简单函数的奇偶性。
(2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊
到一般的数学思想方法.
(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。
导入有点慢,讲的有点细,导致时间上没有完成教学任务,感觉还是自己讲的太多,不能充分调动学生的积极性。
用了多媒体,使用ppt,使得奇偶性函数概念的探究过程更形象更直观,是学生理解更深刻。
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:
1.设疑导入、观图激趣:
使用幻灯片展示图片蝴蝶、雪花等让学生感受生活中的美,从而引入对称在函数中的体现。
2.指导观察、形成概念:
作出函数y=x的图象,并观察这两个函数图象的对称性如何?
借助课件演示,让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:
函数f(x)的定义域为a,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数,类比探究2
偶函数的过程,得到奇函数的概念,又通过具体的例子说明了定义域关于原点对称是研究奇偶性的前提。
3.学生探索、发展思维。
接着通过学案上的例一,总结函数奇偶性的判断方法及步骤:
(1)求出函数的定义域,并判断是否关于原点对称
(2)验证f(-x)=f(x)或f(-x)=-f(x)
(3)得出结论
由学生小结判断奇偶性的步骤之后,提出新的问题:函数按奇偶性如何分类?既奇又偶的函数是不是只有一个?试举例说明。
4.布置作业:
学案上的题型主要包括奇偶性函数的判断及应用
1.思成功
一:是通过设计富有挑战性的问题来呈现背景,通过问题的探究和自主学习来获取相关概念,实现了 “教学逻辑”与“学习逻辑”的连通、“知识逻辑”与“认知逻辑”的连通;二:是在老师创设的情境中,每个学生都积极投入探究过程,学生在疑惑中探索,在探索中思考,在思考中发现,大部分学生积极性高涨,通过看别人怎样观察,
听别人怎样介绍,也学到了知识.
2.思不足
学生练习:在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,以采用
学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。
语言组织:
在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。
教学环节(的完整):
在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,由于时间的关系没有来得及小结造成教学设计不完善。在以后的教学过程中要注意这些环节。
以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。
高中数学说课稿10分钟篇四
各位评委、各位老师:大家好!
我叫李长杉,来自甘肃省嘉峪关市第一中学。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课"教什么?"、"怎样教?"以及"为什么这样教?"三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。
1.本节课内容在整个教材中的地位和作用。
概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的.集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。
2.教学目标定位。
根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。
3.教学重点、难点确定。
本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了①创设情景——引入新课,②交流探究——发现规律,③启发引导——形成结论,④练习小结——深化巩固,⑤思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。
1.创设情景——引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以20xx年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。
2.探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。
3.启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式只须①将二次项系数化为正数,②求解二次方程 ax2+bx+c=0 的根。③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为"三步曲"法)。
4.训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。
5.延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。
新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案".
1.学生在做课本练习1(x+2)(x-3)>0 时,可能会问到转化为不等式组{ 或{ 求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。
2.根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0 可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{ 来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。
以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!
高中数学说课稿10分钟篇五
尊敬的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.
1、 教材的地位和作用
(1)本节课主要对函数单调性的学习;
(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)
(3)它是历年高考的热点、难点问题
(根据具体的课题改变就行了,如果不是热点难点问题就删掉)
2、 教材重、难点
重点:函数单调性的定义
难点:函数单调性的证明
重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)
知识目标:(1)函数单调性的定义
(2)函数单调性的证明
能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想
情感目标:培养学生勇于探索的精神和善于合作的意识
(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)
1、教法分析
“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法
2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)
1、以旧引新,导入新知
通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)
2、创设问题,探索新知
紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。
让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。
让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。
3、 例题讲解,学以致用
例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式
例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。
例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。
学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。
4、归纳小结
本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。
5、作业布置
为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3a组1、2、3 ,二组 习题1.3a组2、3、b组1、2
6、板书设计
我力求简洁明了地概括本节课的学习要点,让学生一目了然。
(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)
本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。
高中数学说课稿10分钟篇六
1. 地位及作用:
“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。
2. 教学目标:
根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:
(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。
(2)能力目标:
(a)培养学生灵活应用知识的能力。
(b) 培养学生全面分析问题和解决问题的能力。
(c)培养学生快速准确的运算能力。
(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。
3. 重点、难点和关键点:
因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。
为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:
1.学生状况分析及对策:
2.教材内容的组织和安排:
本节教材的处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:
(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业
1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。
2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。
3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。
例1属基础,主要反馈学生掌握基本知识的程度。
例2可强化基本技能训练和基本知识的灵活运用。
为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。
1.椭圆的定义和标准方程及其应用。
2.椭圆标准方程中a,b,c诸关系。
3.求椭圆方程常用方法和基本思路。
通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。
(1) 77页——78页 1,2,3,79页 11
(2) 预习下节内容
巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。
高中数学说课稿10分钟篇七
各位老师:
今天我说课的题目是《条件语句》,内容选自于新课程人教a版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:
1.教材所处的地位和作用
在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。这一节课主要的内容为条件语句表示方法、结构以及用法。条件语句与程序图中的条件结构相对应,它是五种基本算法语句中的一种,。通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。
2.教学的重点和难点
重点:条件语句的表示方法、结构和用法;用条件语句表示算法。
难点:理解条件语句的表示方法、结构和用法。
1.知识与技能目标:
⑴正确理解条件语句的概念,并掌握其结构。
⑵会应用条件语句编写程序。
2.过程与方法目标:
⑴通过实例,发展对解决具体问题的过程与步骤进行分析的能力。
⑵通过模仿,操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力。
⑶在解决具体问题的过程中学习条件语句,感受算法的重要意义。
3.情感,态度和价值观目标
⑴能通过具体实例,感受和体会算法思想在解决具体问题中的意义,进一步体会算法思想的重要性,体验算法的有效性,增进对数学的了解,形成良好的数学学习情感,增强学习数学的乐趣。
⑵通过感受和认识现代信息技术在解决数学问题中的重要作用和威力,形成自觉地将数学理论和现代信息技术结合的思想。
⑶在编写程序解决问题的过程中,逐步养成扎实严谨的科学态度。
1.教学方法:根据本节内容逻辑性强,学生不易理解的特点,本节教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这种方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。
2.教学手段:运用计算机、图形计算器辅助教学
1.创设情境(约4分钟)
首先,我要求学生们编写程序,输入一元二次方程
的系数,输出它的实数根。这样可以把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,因为要解决这一问题,根据我们之前所学的三种算法语句是无法解决的,这样就引出今天我们所要学习的内容。
2.探究新知(约8分钟)
为了引入概念,我首先给出了一个基本的应用条件语句能够解决的例题:
例1 编写一个程序,求实数x的绝对值。
整个过程由师生共同分析完成。老师要引导学生分析、研究例题中的两个程序,既要让学生们看到已知的三种语句,更要注意到未知的语句,即条件语句。总结上述例题的程序可得出条件语句的两种一般格式,接下来由师生共同对这两种格式进行研究.
3.知识应用(约15分钟)
此环节有两个例题
例2 编写程序,写出输入两个数a和b,将较大的数打印出来
例3 编写程序,使任意输入的3个整数按从大到小的顺序输出.
先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,然后利用图形计算器演示,学生会惊喜的发现:自己也是个编程高手了!这样可以激发学生们的学习兴趣)
4.练习巩固(约4分钟)
课本第30页第3题
练习可巩固学生对知识的理解,也可在练习中发现问题,使问题得到及时的解决。
5.课堂小结(约5分钟)
条件语句的步骤、结构及功能.
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用
6.布置作业
课本练习第3、4题
[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。
7.板书设计
1.2.2条件语句
1、条件语句的一般格式
(1)if-then-else语句
格式: 框图:
(2)if-then语句
格式: 框图:
2、小结
(1)
(2)
(3)
2、例1 引例
例2 例4
例3