公元480年左右,我国数学家____经过刻苦钻研,反复演算,将圆周率推算到了小数点后第7位,并得出它是一个无限不循环的小数,比后来外国数学家获得同样的结果要早1000多年。
A. 秦九韶
B. 祖冲之
C. 刘辉
D. 贾宪
B. 祖冲之
祖冲之算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926,祖冲之因此入选世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家。
祖冲之还给出圆周率(π)的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位。祖冲之对圆周率数值的精确推算值,对于中国乃至世界是一个重大贡献,后人将“约率”用他的名字命名为“祖冲之圆周率”,简称“祖率”。
扩展知识
中国古代数学家们对这个问题十分重视,研究也很早。在《周髀算经》和《九章算术》中就提出径一周三的古率,定圆周率为三,即圆周长是直径长的三倍。此后,经过历代数学家的相继探索,推算出的圆周率数值日益精确。
东汉张衡推算出的圆周率值为3.162。三国时王蕃推算出的圆周率数值为3.155。魏晋的著名数学家刘徽在为《九章算术》作注时创立了新的推算圆周率的方法——割圆术,将圆周率的值为边长除以2,其近似值为3.14;并且说明这个数值比圆周率实际数值要小一些。
刘徽以后,探求圆周率有成就的学者,先后有南朝时代的何承天,皮延宗等人。何承天求得的圆周率数值为3.1428,皮延宗求出圆周率值为22/7≈3.14。
祖冲之认为自秦汉以至魏晋的数百年中研究圆周率成绩最大的学者是刘徽,但并未达到精确的程度,于是他进一步精益钻研,去探求更精确的数值。
查看答案